
PART II: DEEP LEARNING



CONTEXT

What you have learned

The machine learning canon:
• Tools: linear algebra, optimization, sampling, model selection, ...
• Principles: loss, risk, regularization, probabilistic modeling,...
• Algorithms/Problems: classification, dimension reduction, regression,...

All (supervised) methods share a common recipe:
• Frame the problem as learning a function from a family F = {fθ : θ ∈ Θ}

fθ : Rd → {0, 1} (or [0, 1]) fθ : Rd → ∆K fθ : Rd1 → Rd2 fθ : S× A→ S

• Specify a loss function between model and data

L (fθ(x), y) = −y log fθ(x)−(1−y) log (1− fθ(x)) L = −
K∑

k=1

yk log fθ(x)k L = ‖y− fθ(x)‖2
2 L = ...

• Minimize the empirical risk on a dataset {(x1, y1), ..., (xn, yn)}

θ∗ = argminθ
1
n

n∑
i=1

L (fθ(xi), yi)

Key point: this is machine learning. It works.
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BUT WHAT ABOUT ALL THE AI HYPE?

Modern AI/ML is the same recipe
• Gather data, choose F = {fθ : θ ∈ Θ}, specify loss, minimize empirical risk
• All the same potential issues exist (wrong F , under/overfitting, optimization issues,...)
• The same statistical and computational thinking is necessary

The four catalysts of the AI explosion
1. Large and readily available datasets

2. Massive and cheap computational power

3. Flexible and general function families F
4. Open-source ML software libraries with powerful abstractions

We will study some neural network families F . While neural networks are powerful,
there is nothing magical or fundamentally different than what you already know.
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CATALYST 1: DATA

Computer Vision

SVHN CIFAR10 ImageNet ...

...

Reinforcement Learning

OpenAI Breakout OpenAI Cartpole UCB Pacman ...

...

Natural Language Processing

Wikipedia (English) Twitter Jeopardy ...

...

See https://github.com/niderhoff/nlp-datasets
And so much more...
• https://www.data.gov/
• https://opendata.cityofnewyork.us/
• https://github.com/caesar0301/awesome-public-datasets
• https://data.world
• ...
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CATALYST 2: COMPUTATIONAL POWER

Processing power has continued to grow... and become cheaper...

GPUs have accelerated this trend, especially important for ML-relevant computation

Cloud computing has made this even easier (abstracting away IT and system ops)
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CATALYST 3: NEURAL NETWORKS
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With enough layers and enough units per layer, the network is a universal function
approximator: any function can be fit (given enough data...).
• Inputs x0

i enter into unit j, weighted by edges w0
ij, and are summed with bias b1

j

• σ(·) provides elementwise nonlinearity
• The result x1

j is transmitted to layer 2, the next layer

Learning/Training is then minimizing an empirical risk over the parameter set

θ =
{

w`ij, b
`
j

}
i,j,`

= {W`, b`}`
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EXAMPLE: LOGISTIC REGRESSION → NEURAL NETWORKS

Logistic Regression

x W b fθ(x)
σ(Wx + b)

Neural Network

x

W1 b1 f (1)
θ (x)

σ(W1x+ b1)

W2 b2 f (2)
θ (x)

σ(W2 f(1)(x) + b2)
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EXAMPLE: LOGISTIC REGRESSION → NEURAL NETWORKS

Neural Network

W1 b1 f (1)
θ (x)

σ(W1x+ b1)

W2 b2 f (2)
θ (x)

σ(W2 f(1)(x) + b2)

x1

x2

...

x784

f 1
1

f 1
2

...

f 1
20

f 2
1

f 2
2

...

f 2
10

Input layer x Hidden layer f (1)(x) Output layer f (2)(x)

Cascade layers for any amount of depth and complexity!

Naive conclusion: deep learning is easy...
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...DEEP LEARNING IS HARD

• How do I choose
∣∣f (1)

∣∣, the number of units in the hidden layers?
• How do I choose L, the number of layers?
• How do I choose the activation function σ(·)?

sigmoid tanh relu softplus softmax ...
1

1+e−x
ex−e−x

ex−e−x max(0, x) log (1 + ex) exi∑
k exk ...

• Are there other choices to make?
• What about overfitting?
• Will my optimizer converge?
• Is my problem solvable with a particular architecture F?

• Can my data be fit by a particular architecture F?

MNIST vs. SVHN

Deep learning requires engineering skill, statistical thinking, and thoughtful empiricism.

Advanced Machine Learning 9 / 163



CATALYST 4: SOFTWARE

Machine Learning libraries have abstracted {math, stats, optimization, ...} → engineering

...

Under the hood are several amazing capabilities. Arguably the two most important:

• Automatic differentiation

• Stochastic optimization

To understand modern ML, we need to understand why these work... and when they don’t.
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TOOLS: AUTOMATIC DIFFERENTIATION



REVISITING TENSORFLOW TUTORIAL

Optimization is central to machine learning

• We seek to minimize empirical risk R(θ) = 1
n

∑n
i=1 L (yi, fθ(xi))

• We iteratively optimize to find a point θ∗ where∇θR(θ)|θ∗ = 0
• Gradient descent (for some step size αk):

θ(k+1) ← θ(k) − αk∇θR(θ)

• Note: you will also remember convex optimization and the Hessian Hθ . Neural networks
are nonconvex and thus we will largely ignore second order optimization

But no gradients were taken in the tensorflow tutorial!

Somehow tensorflow took the gradients under the hood
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DIFFERENTIATION

Four ways to take derivatives:
• manual (calculus) differentiation
• numerical differentiation
• symbolic differentiation
• automatic differentiation

They are, respectively:
• painful, mistake-prone, not

scalable (cost of a Jacobian?)
• unstable (floating point),

inaccurate
• restricted (to closed form),

unwieldy (expressions)
• awesome: general, exact,

particularly well suited to
algorithmic code execution

[Baydin et al (2015) JMLR... note the for loop!]

Understanding autodiff requires a bit of thinking, but remember, it’s just the chain rule
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FORWARD MODE AUTOMATIC DIFFERENTIATION

Consider the function y = f (x1, x2) = log(x1) + x1x2 − sin(x2)

• Break down f into its evaluation trace: v−1 = x1, v1 = log v−1, ...

• List symbolic derivatives for each op in the trace: v̇1 =
v̇−1
v−1

,...

• Chain rule: recurse through the evaluation trace, numerically calculate (exact!) derivatives

Note: not a neural network.

[Baydin et al (2015) JMLR]

Note: it is necessary to execute this forward mode for each input dimension...
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REVERSE MODE AND NEURAL NETWORKS

Neural Network

size:

W1

|W1| = d0

f (1)
θ (x)
σ
(

W1x
)

d1

W2 f (2)
θ (x)

σ
(

W2 f(1)(x)
)

d2

W3 f (3)
θ (x)

σ
(

W3 f(2)(x)
)

d3

[
∂
∂W1

L
(
yi, f 3

θ (xi)
)]

=
[
∂f 1

∂W1

]
×

[
∂f 2

∂f 1

]
×

[
∂f 3

∂f 2

]
×

[
∂L
∂f 3

]

d0 × d4 d0 × d1 d1 × d2 d2 × d3 d3 × d4

Computational cost:
• Forward mode: matrix-matrix multipliesO(d0d1d2 + d0d2d3 + d0d3d4)

• Reverse mode: matrix-vector multipliesO(d2d3d4 + d2d1d4 + d1d0d4)

• But if L is scalar (like a loss function...), then d4 = 1!
Backprop is reverse mode autodiff on neural network losses. d4 = 1→ very fast and efficient!
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NOTES ON AUTOMATIC DIFFERENTIATION

Automatic differentiation is a symbolic/numerical hybrid:

• Each op in the trace supplies its symbolic gradient (e.g., v̇1 =
v̇−1
v−1

on earlier slides)

• Execution trace (fwd or bkwd) numerically calculates the exact (not numerical!) gradient

Reverse vs Forward mode autodiff
• Reverse mode is better for f : RN → RM for N � M.
• Forward mode is better for f : RN → RM for N � M.
• What are many machine learning problems? What are (most) neural networks?

Does this only apply to neural nets?
• Most all modern ML libraries include autodiff; hence the computational graph...
• However, not necessary: why not wrap numpy ops with their symbolic gradients?

https : //github.com/HIPS/autograd

Editorial remarks
• Audodiff is old and many times reinvented; yes it’s just the chain rule.
• Machine learning was embarrassingly slow to adopt autodiff. Now it’s pervasive.
• Can I just forget calculus? No! ...but also (sort of) Yes!
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TOOLS: STOCHASTIC OPTIMIZATION



EXAMPLE: LOGISTIC REGRESSION → NEURAL NETWORKS

Logistic Regression

x W b fθ(x)
σ(Wx + b)

Neural Network

x

W1 b1 f (1)
θ (x)

σ(W1x+ b1)

W2 b2 f (2)
θ (x)

σ(W2 f(1)(x) + b2)

Concerns:
• Number of parameters |θ| and complexity of optimization is growing...
• With ‘big data’, at what point will I not be able to reasonably calculate the gradient of the

empirical risk∇θR(θ) = 1
n

∑n
i=1∇θL (yi, fθ(xi))?

• When will we care about step size αk in optimization: θ(k+1) ← θ(k) − αk∇θR(θ) ?
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STOCHASTIC GRADIENT DESCENT

Idea: at each iteration, subsample batches of training data: M random data points xi1 , ..., xiM

θ(k+1) ← θ(k) − αk
1
M

M∑
m=1

∇θL (yim , fθ (xim ))

Steps are now less likely to be descent directions, hence noisy... but do we gain anything?
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STOCHASTIC GRADIENT DESCENT

The previous optimization paths, scaled by relative time, show major gains!

Stochastic Gradient Descent: optimization with noisy (subsampled) gradient estimators

Note: Properly speaking, SGD is batches of size M = 1; otherwise mini-batch SGD. We will use SGD for both.
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STOCHASTIC GRADIENT DESCENT

Some common, intuitive, but rather weak arguments that SGD should work:

• Gradients are only locally informative, so needless (early) accuracy is wasteful

• If estimator is unbiased, the stochastic gradient points in the right direction on average

• We ideally seek to minimize true risk Ep(x,y) (L (y, fθ(x))), so already empirical risk
R(θ) = 1

n

∑n
i=1 L (yi, fθ(xi)) is a noisy estimator of the true objective

• Injection of noise is likely to kick θ out of saddle points and sharp local optima

• Stochastic gradients may help prevent overfitting to the empirical risk function

• Also for discussion: how might batch size help to exploit parallel computation?

The above are roughly correct (or believed so), but careless trust here can be problematic...
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DANGER! SGD REQUIRES CARE

Use SGD to solve this problem:
• Data {x1, ..., x21} = {−10.0,−9.0, ..., 0.0, ..., 9.0, 10.0}
• Loss L (xi, fθ(xi)) = (xi − θ)2 Note: you should know the answer θ∗ already

• Batch size M = 1 Note: this choice is just for simplifying the explantion

• Initialize θ0 = −20
• Step size αk = 0.5 for all k.
• That is, solve:

θ∗ = arg min
θ

1
n

n∑
i=1

L(xi, fθ(xi)) = arg min
θ

1
21

21∑
i=1

(xi − θ)2

Result: SGD bounces around and never converges...

Takeaway: step sizes {αk} matter tremendously.
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ROBBINS-MONRO

There is a deep literature on SGD. For our purposes:
• Theory: SGD is provably convergent with a proper choice of schedule {αk}k

• In brief: Robbins-Monro says {αk}k must decay quickly, but not too quickly:
∞∑

k=1

α
2
k < ∞ and

∞∑
k=1

αk = ∞

• A good choice: αk = 1
1+kα0 ...α0 = 0.5 or similar; see tf.train.inverse_time_decay()

Orange: full batch gradient; Blue: SGD no decay; Red: SGD with decay

SGD is one of the most important enablers of modern machine learning
For those interested, I strongly recommend [Bottou, Curtis, Nocedal 2017] and the original [Robbins and Monro 1951]
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MORE ADVANCED TECHNIQUES

Can we exploit more information to improve stochastic gradient descent?
• Yes: numerous advances off SGD exist
• No: making rigorous statements about their performance is challenging
• Yes: many cutting-edge methods now use these methods in lieu of standard SGD
• No: there is some indication that they overfit and that SGD is in fact preferred.
• ...an unresolved and very current debate.

Some repeated themes:
• Momentum (Momentum/NAG): θ(k+1) ← θ(k) − u(k) for u(k) ← βu(k−1) + αk∇θR(θ)

• Second order approx. (AdaGrad): θ(k+1) ← θ(k) − Dk∇θR(θ) for a diagonal matrix Dk

• Gradient-based decay (Adadelta/RMSprop/...): θ(k+1) ← θ(k) − αk∇θR(θ) where αk is
a function of previously calculated gradients (such as inverse average squared norm).

• Combinations of above strategies (Adam/...)

image from a blog: http://ruder.io/optimizing-gradient-descent/
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HOW TO PROCEED

Practical realities:
• All are implemented in tensorflow, so we allow that abstraction.

https://www.tensorflow.org/api_guides/python/train#Optimizers

• Try one, tune its hyperparameters, try another, repeat... empiricism matters!
• Current wisdom: use Adam or plain old SGD

For more detail:
• Use SGD, says a leading researcher in this space (Ben Recht)

https://arxiv.org/pdf/1705.08292.pdf

• A few blogs with heuristic descriptions
http://ruder.io/optimizing-gradient-descent/

https://wiseodd.github.io/techblog/2016/06/22/nn-optimization/

Does this feel abrupt or unsatisfying? It should!
• Choosing step sizes and adaptive gradient techniques are unsolved (nonconvex problems!)
• SGD is rigorous but sometimes slow
• Other methods can be faster but may be problematic in a way we don’t yet understand
• Welcome to the cutting edge... this is the “art” (or careful empirical side) of deep learning
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CONVOLUTIONAL NEURAL NETWORKS I



INFORMATION BOTTLENECKS IN NEURAL NETWORKS

Neural Network

W1 b1 f (1)
θ (x)

σ(W1x+ b1)

W2 b2 f (2)
θ (x)

σ(W2 f(1)(x) + b2)

Notice:
• The first layer bottlenecks the 28× 28 space R784 → R20... loss of expressivity?
• Increasing 20→ 64 would drastically increase |θ|... slow algorithm and overfitting!
• ...because every unit sees all input units... that is, W1 is a full matrix

Opportunity:
• What dependency does x1 have on x784? x2? x29?
• Recall (from Part I) that exploiting known (in)dependencies is a good thing
• Idea: make linear maps local... and rely on later layers to capture long-range features.
• Exploiting local statistics allows more outputs for the same net |θ|!
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CRITICAL IDEA: LOCAL STATISTICS

A new view of the same fully connected layer that we have been using:

• Blue: input units (eg 7× 7 image)

• Green: output units (5× 5 readout)

• Weight matrix (not shown): R49×25 → |θ| = 1225

Input Units (7x7)

Output Units (5x5)

Local linear filter: consider only a 3× 3 linear map, and sweep it locally

• New weight matrix: R3×3 → |θ| = 9

• > 400× savings in parameters!

• But we have lost expressivity...

Image credit for all of these and the following: https://github.com/vdumoulin/conv_arithmetic
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CONVOLUTIONAL LAYER

Call this 3× 3 linear map a filter or convolution

Now use multiple filters (below K = 4), producing multiple activation maps (each 5× 5)

K activation
maps

Convolutional layer: linear map applied as above; a 3× 3× 1× 4 parameter tensor.

Our/tf convention for 2D convolution: filter width× filter height× input depth× output depth.

Advanced Machine Learning 29 / 163



CONVOLUTIONAL NEURAL NETWORK

Convolutional Neural Network: a neural network with some number
of convolutional layers. The workhorse of modern computer vision.

You should now be able to interpret/implement published models such as:

[LeCun et al 1998]

• What is the filter size from input to C1? 5 × 5

• What is the size of the weight matrix from S4 to C5? 16 × 5 × 5 × 120 = 48, 000

• What is subsampling? It’s now called average pooling. What’s average pooling? ...
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TRICKS OF THE TRADE: ZERO PADDING

Note a few potential drawbacks:
• Filtering reduces spatial extent of activation map
• Edge pixels/activations are less frequently seen
• (Note these can also be benefits)

Zero Padding:
• Add rows/cols of zeros to the input map, solving both problems
• Output activation maps will preserve size when

Mpad =
1
2

(Mfilter − 1)

Note: one can zero-pad more/less/asymetrically/otherwise, with varied problem-specific effects
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TRICKS OF THE TRADE: STRIDING

On the other hand:
• Filtering processes the same information repeatedly
• Possibly wasteful if images are quite smooth
• Could get more activation maps if each was smaller

Stride:
• Jump the filter by some Mstride pixels/activations
• Output activation map (assuming square) will be of height/width

Moutput =
Minput −Mfilter + 2Mpad

Mstride
+ 1

• Caution! Non-integer results in above will be problematic. Care is required.

Note: striding and zero-padding give design flexibility and balance each other
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TRICKS OF THE TRADE: FILTER SIZE

Notice:
• Smaller filters process finer features
• Larger filters process broader features
• Common choices: 3× 3, 5× 5, 7× 7, 1× 1
• Empiricism dictates which to use (again: the art of deep learning)

Wait! What is a 1× 1 layer? Isn’t that meaningless?
• No! Remember, the conv layer is filter width × filter height × input depth × output depth
• Critical: filters always operate on the whole depth of the input activation stack
• 1× 1 conv layers→ dimension reduction: preserve map size, reduce output dimension K
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PUTTING THESE ALL TOGETHER

Context
• Convolutional layers specify the linear map (and how to calculate it)
• An elementwise nonlinearity is still expected to follow
• tf.nn.relu( tf.nn.conv2d( x , W_cnn , strides=[1,2,2,1] , padding=’SAME’ ) + b )

• Compare to tf.nn.relu( tf.matmul( x , W) + b)

Note: tf ’SAME’ chooses zero padding to satisfy Mout =

⌈
Min

Mstride

⌉
, for stride = [batch, width, height, depth]

Specific example
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Questions
• What is the filter?
• What is the filter width?
• What is the zero padding?
• What is the stride?

Advanced Machine Learning 34 / 163



IN PRACTICE

Make cnn_cf: a single convolutional layer network with 64 activation maps

Note:
• This network should be more expressive than logistic regression
• Compare |θ| with logistic regression
• Draw this network
• Run it...
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CAUTION: NUMERICAL INSTABILITY

Warning
• The softmax operation should > 0, but numerically can sometimes be == 0
• log 0 will cause your training to crash with some NaN errors (possibly just in tb)
• Numerical stability is always a concern in practical machine learning
• Here the problem is readily spotted...

• Always use:
• tf.nn.softmax_cross_entropy_with_logits

...or equivalently tf.losses.softmax_cross_entropy

• tf.nn.sparse_softmax_cross_entropy_with_logits

...or equivalently tf.losses.sparse_softmax_cross_entropy

• The former is for one hot encodings; the latter for {1, ...,K} encodings of labels
• Never write out the actual cross entropy equation

Fix it. Run it...
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CAUTION: CHOICE OF OPTIMIZER

Consider different SGD variants

We will stick mostly with Adam for remainder, but again, empiricism...
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PROGRESS WITH cnn_cf

Training and Test

Questions
• Why is test/train nonsmooth/smooth?
• How do I set up tensorboard summaries for train and test?
• Will we do better if we make this network more complicated/deeper?
• Am I concerned by a ≈ 0.4% difference between train and test?
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TRICKS OF THE TRADE: POOLING

Idea
• Perhaps we care less about the precise location of activations in every layer
• And we know that parameters will be creeping upwards with padded layers
• Pooling adds a layer that averages or takes the max of a small window of activations
• Note: operates on each activation map individually
• Also called subsampling/downsampling (cf [Lecun et al 1998] figure earlier)

Max Pooling (most popular) Average Pooling
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Now
• I can reduce the number of parameters without (hopefully) losing much expressivity...
• I can increase the expressivity (hopefully) without increasing the number of parameters
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ADDING COMPLEXITY

Make cnn_cpcpff: conv→pool→conv→pool→fc→fc

Note:
• Draw this architecture
• Run it...

Advanced Machine Learning 40 / 163



ADDING COMPLEXITY

Training performance

Worth it?
• Better, but not much better.
• More costly

This story will change with more complex datasets...
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IMAGENET

The best large-scale vision dataset available

Note also that, in many images, bounding boxes are now provided
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IMAGENET CHALLENGE

ImageNet Large Scale Visual Recognition
Challenge (ILSVRC)

• Annual computer vision challenge

• e.g. ILSVRC 2014 had > 1MM
training, 50K validation, 100K test

• Multinomial classification K = 1000

• Since 2012, dominated by CNNs of
increasing complexity

• Human performance surpassed in 2015

• Not without controversy...

[Kaiming He]

[Canziani et al 2017]
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ALEXNET

The first ILSVRC winner with deep learning

[Krizhevsky et al 2012]

We can understand the entirety of this network
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TRICKS OF THE TRADE: DROPOUT

With increasing complexity comes increasing overfitting. Let’s regularize!

[Srivastava et al 2014]
This widely used strategy is dropout
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TRICKS OF THE TRADE: DROPOUT

Add a dropout layer: conv→pool→conv→pool→fc→drop→fc

Does not seem to affect training much...
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TRICKS OF THE TRADE: DROPOUT

But hopefully it mitigates overfitting

Discuss... again, we expect this to matter more in more complex networks
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TRICKS OF THE TRADE: DROPOUT

Dropout has become standard practice in modern network design

[Srivastava et al 2014]
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STRONGLY RECOMMENDED!

Play with the architectures and choices we have made so far.
Experience is the only way to improve your deep learning skills.

Some ideas:
• Change the filters: sizes, striding, padding
• Change the pooling: average/max, different sizes, different positions
• Change the architecture
• Change the optimization method
• Change the batch size
• Change the summary/tensorboard content
• ...
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INCEPTION MODULES

2014 ILSVRC winner added yet more complexity... Idea:
• Build a useful block or module of layers
• Layer those modules together

Inception module

[Szegedy et al 2014]

Reminder: 1× 1 layers operate on the whole depth; act as dimension reduction
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INCEPTION

Full network

[Szegedy et al 2014]
Notice auxiliary classifiers
• Concern: gradient info does not propagate deep into the network
• Not overfitting!
• A nice trick, but there is another that we will soon see
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INCEPTION

Another view

[Szegedy et al 2014]

More complex, but still components we understand.
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INTERLUDE: RETRAINING / TRANSFER LEARNING

Networks are trained for a specific task, but we suspect they also learn some useful concepts

[Krizhevsky et al 2012]

[Szegedy et al 2014]]
Idea: exploit a large pre-trained network to solve your problem...
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RESNET

2015 ILSVRC winner:
• added (vastly) more depth to the network
• successfully trained with one key idea
• surpassed human level performance
• did so with reasonably fewer parameters

[Kaiming He], [Canziani et al 2017]
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PROBLEMS WTH DEPTH

Exploding and vanishing gradients were a major historical problem for deep networks
• Chain rule has multiplicative terms, nonlinearities can saturate, etc.
• Normalization layers have been widely used to mitigate. Two popular strategies:

• Local response norm.: divide unit activation by sum of squares of local neighbors
[Krizhevsky et al 2012]

• Batch norm.: standardize all units across the minibatch to a learned mean and var.
[Ioffe and Szegedy 2015]

• Normalization is an important trick of the trade (as common as dropout and pooling)

Degradation has been another key roadblock to increasing depth

[He et al 2015]

Notice:
• Training error increasing with increasing depth... not overfitting!
• Not an issue with the function family, since F20 ⊂ F56

• Cause is optimization practicalities...
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RESNET

Key idea: layers learn residuals x`+1 − x` rather than the signal x`+1 itself:

Layers naturally tend to identity transformation, degradation is avoided, large depth is enabled:

Resulting world leading performance, with many follow-on variations (layer dropout, e.g.)
[He et al 2015]
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DEEP LEARNING REALITIES



MNIST → SVHN

Consider the same digit classification problem on (seemingly) similar data

MNIST vs. SVHN

Questions:
• If F was well chosen on MNIST, will it work well on SVHN?
• If yes, what does that mean?
• If no, what do we have to change to make it work?
• ...

• Key takeaway today: answering these questions is critical, hard, and very empirical
• We will go through a number of steps/lessons
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1. DATA

Input layer: three maps of size 32× 32
[32× 32× 3] = [32× 32× 1] [32× 32× 1] [32× 32× 1]

• Check data to make sure it follows the labeling format you want (hint: it doesn’t)
• Careful about reshaping in CNNs
• tf takes data from the first index of the input; is that an image?

Run a simple model to get started...
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2. NUMERICAL INSTABILITY

Reminder!
• Be careful of numerical underflow and overflow; things like log 0 will crash your code

with NaN errors (possibly just in tb)
• Numerical stability is always a concern in practical machine learning
• Again, always use:

• tf.nn.softmax_cross_entropy_with_logits

• similar numerically safe functions when in a related situation.

Fix it. Run it...

Advanced Machine Learning 60 / 163



3. LOGISTIC REGRESSION AND BASIC DEBUGGING

Start with logistic regression and SGD

tb helps, but basic debugging is still useful

Not learning...
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4. CHOOSING AN OPTIMIZER

Switching from SGD to Adam has helped before; we’ll also try RMSProp

Performance is still terrible, but at least the loss function is not pathological. Progress...
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5. MEAN SUBTRACTION

Observation

• SVHN data has very different illumination/brightness
• Precondition via mean subtraction of each channel?

Progress! Preprocessing data matters... do not rely on the neural net to do all the work
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6. TENSORBOARD FOR EMPIRICISM

Look at the histograms of logits over time to choose which one is learning.
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7. ADDING COMPLEXITY

Add cnn_cf: conv→ fc and cnn_cnf: conv→ norm→ fc
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7. ADDING COMPLEXITY

Add cnn_cpncpnff: conv→pool→norm→ conv→pool→norm→fc→fc

Training performance is very high. Overfitting?
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8. VALIDATION DATA

A separate validation set:
• helps monitor training
• avoids data snooping (overfitting to the test set)
• clarifies overfitting (substantial here!)
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9. DROPOUT

Add a dropout layer to regularize
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10. HYPERPARAMETER SEARCH

To further improve performance, carefully search the free (hyper)parameters:
• Change the filters
• Change the architecture
• Change the optimization method
• Change the parameters of those methods (Adam learning rate, dropout prob, etc.)
• Scrutinize mislabels to look for patterns
• Be mindful of overfitting, including overfitting to your validation set
• ...

Excellence in deep learning comes from experience and empiricism.

Tools and tricks at your disposal:
• Convolutional layers: filter size, zero padding, striding
• Optimization: SGD, Adam, RMSProp, etc.
• Intermediate layers: pooling, dropout, normalization
• Monitoring: validation data, tensorboard, classic debugging
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SUMMARIZING CONVOLUTIONAL NEURAL NETWORKS

Convolutional neural networks are the power beind modern computer vision
• The idea of a convolution saves parameters and exploits knowledge of local statistics
• In challenging datasets, CNNs produce excellent results
• They require much care and attention to be performant
• Deeper networks can achieve superhuman classification performance
• A particular architecture can be (very) problem specific

Discuss: is this general/full AI or weak/narrow/applied AI?
• Have we solved digit recognition, or simply MNIST and SVHN (separately)?
• How much more general is the problem of full computer vision?
• What about object recognition, multi-object tracking, video, prediction, etc.?
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REINFORCEMENT LEARNING



TRANSITION TO RL

Supervised learning
• is learning a relationship between iid input-output pairs
• relies on training data: examples of correct situations (e.g. an input image) along with the

correct action (e.g. output the label ‘3‘)
• depends on this data being representative of all possible scenarios
• uses instructive feedback: it indicates the correct action regardless of what action is taken

Reinforcement learning
• is learning how to map an input situation into an output action to maximize reward
• relies on interaction: actions must explore possible actions, searching for good behavior
• operates where all possible scenarios can not reasonably be captured by training data
• uses evaluative feedback: training information evaluates value of actions taken
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REINFORCEMENT LEARNING

Reinforcement Learning is the study of problems that can be characterized by...

...an Agent...
• takes action At at time t

• receives reward Rt

• observes state St

...interacting with an environment.
• affected by actions At

• produces rewards Rt

• updates its state St based on the agent’s actions
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REINFORCEMENT LEARNING

Reinforcement Learning is the study of problems that can be characterized by...

Note
• behavior will amount to a policy π(a|s): the probability of taking action a when in state s

• state can be unchanging (this lecture), fully observed (next lectures), partially observed
• decision-making agent interacts with environment to achieve a goal (e.g. max reward)
• usually RL agents have to operate in presence of major uncertainty
• correct actions require planning and understanding future consequences of present action
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EXAMPLE: CART POLE

Example choices:

• State St = [xt, ẋt, θt, θ̇t], the position/velocity of cart; angle/velocity of pole
• Reward Rt = +1 if θ ∈ [π/2− α, π/2 + α], Rt = 0 otherwise
• Action At = {←,→}; move cart left or right
• Goal: maximize total reward

Note:
• The agent knows nothing more about the environment (no physics, no experience, ...)
• We might hand pick a policy: π(a|s) =← if θ > π/2... but it won’t work well
• Learning to balance the pole requires understanding long(ish) range consequences
• To explore new possibilities, agent must sometimes try unlikely (in π) actions...
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EXAMPLE: MS PACMAN

Example choices:
• State St = [xp

t , d
p
t , x

g0
t , d

g0
t , ...], position/direction of you, ghosts, pips, fruits, etc...

• Reward Rt ∈ {+10,+100,−1000, 0} for pip, ghost, loss of life, doing nothing
• Action At = {←,→, ↑, ↓}; move Ms PacMan
• Goal: maximize total reward

Note:
• Many possible states can result in different problem difficulty
• Rewards can also be designed/mapped to features: score board vs loss of life (if multiple)
• How to balance short term rewards (pips) with big wins (ghosts, not dying,...)?
• How might you balance being greedy about things you know, vs learning new things?
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EXAMPLE: NOT JUST AI

Example choices:
• State St = food availability/freshness, appetite, dishes, etc...
• Reward Rt involves speed, quality, spills, expense, satiety, hunger, etc...
• Action At of multiple steps involving delay/planning/experience.
• Goal: maximize total reward

Note:
• When/how often should you try cooking something new?
• When/how often should you do what you know works?
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EXPLORATION / EXPLOITATION

The previous examples point to exploration / exploitation
• a fundamental concept in reinforcement learning
• recall that operating under uncertainty is fundamental to RL
• Any notion of “best action” is really only “best given what I know so far”
• A random or believed-suboptimal action may underperform, but it should teach us

something
A fundamental tradeoff/conflict
• Exploitation accrues more near-term reward, but learns little new
• Exploration sacrifices short-term reward, but accrues information

[from http://slides.com/ericmoura]
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THE MULTI-ARMED BANDIT PROBLEM

To elucidate the exploration/exploitation tradeoff, we consider the multi-armed bandit problem

You face K slot machines (used to be called one-armed bandits, hence...)
• You choose which slot machine to play: action at = k

• Rewards payoff with parameter µ1, ..., µK ; eg: rt|at = k ∼ Bern(µk) or ∼ N (µk, 1)

• The probabilities are unknown; you must discover them through your action sequence
• This is a fixed-state (or nonassociative) RL problem: actions don’t change environment
• You have to find the best machine, and play it enough to accrue max reward
• (not just a thought experiment: think A/B testing on an ecommerce site)

Note there is a big literature on bandits: different rewards, dueling bandits, contextual bandits,
adversarial bandits, etc. Here we deal only with the simplest case.
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DEFINITIONS

We are interested in accruing maximum reward. Some important definitions:

• Define reward rt and action at as previous.

• Define value function q(at = k) = E(rt|at = k): expected reward for playing machine k

• Define optimal sequence (theoretical, not achievable) as maxa q(a)

• We then equivalently attempt to minimize regret:

L(T) =
T∑

t=1

max
a

q(a)− E

(
T∑

t=1

q(at)

)

• ...how much we regret our sequence of actions, if we later learned the best choice.

Strategies:

• Greedy: only exploit, pick µk̂ , what you believe to be the best so far

L(T) = T
(

max
k
µk − µk̂

)
linear regret in T!

• Random: only explore, pick at random

L(T) = T
(

max
k
µk −

1
K

(µ1 + ...+ µK)

)
linear regret in T!

We hope to achieve sublinear regret with more sensible policies π(a)
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SIMPLE BALANCE OF EXPLORATION AND EXPLOITATION

ε-greedy policy is a simple mixture of greedy and random:

at =

{
arg maxk Q(at = k) with probability 1− ε
k ∼ Unif (1, ...,K) with probability ε

Value function Q(at) estimates true action value q(at = k) = E(rt|at = k). Update:

Q(at = k)← Q(at = k) +
1
nk

(rt − Q(at = k)) or equivalently,←
1
nk

nk∑
i=1

ri

learning the action-value function q...
Consider the following 10-armed case with Gaussian bandits rt|at = k ∼ N (µk, 1)

[Sutton and Barto... note they use q∗(k), not µk]
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PERFORMANCE OF ε-GREEDY

Performance improves over greedy approach...

[Sutton and Barto]

Better, but still linear regret (and ε depends on uncertainty/variance in the problem)
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UPPER CONFIDENCE BOUND

ε-greedy exploits well (1− ε of the time), but explores randomly. Suppose instead:
• we maintain a confidence interval on each µk

• we already have “posterior” mean Q(at = k); define confidence interval as σ2(at = k)

• Explore arms where there is reasonable probability of a higher value
• Using our posterior belief, we select (for some constant c)

k∗ = arg max
k

(Q(at = k) + cσ(at = k))

• if t is large, confidence should be high→ greedy exploitation
• if t is small, confidence low→ exploration
• We call such methods UCB, and they require an estimate of confidence. Good choice:

k∗ = arg max
k

(
Q(at = k) + c

√
log t
nk

)

UCB achieves log(T) regret, there is a
great deal known about it theoretically, and
it generalizes well

[Sutton and Barto]
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THOMPSON SAMPLING

Consider the K Bernoulli bandits problem:
• rt|at = k ∼ Bern(µk)
• Setup otherwise identical to previous. Recall Bayesian modeling and conjugacy

• Our prior (uninformed/uniform) belief is µk ∼ Beta(1, 1). Recall:

p(µ) =
Γ(α+ β)

Γ(α)Γ(β)
µα−1(1− µ)β−1

• Each observation updates beliefs easily with Beta-Bernoulli conjugacy:

µk|n0
k , n

1
k ∼ Beta

(
1 + n1

k , 1 + n0
k

)
Thompson sampling:
• Initialize all arms with µk ∼ Beta(1, 1)
• At time t, sample st(k) ∼ Beta

(
1 + n1

k , 1 + n0
k

)
• Play k∗ = arg maxk st(k)
• Update n1

k+1, n
0
k+1 based on rt

Thompson sampling achieves log(T)
regret, outperforms many methods in
practice, and generalizes to several settings

[Xu et al 2013; reward % vs time]
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RECAP

Reinforcement Learning is the study of problems that can be characterized by...

• Actions: agent takes action At at time t

• Rewards: agent/environment receives/produces reward Rt

• State: environment updates state St (fixed in multi-armed bandit)

We choose/learn/design a policy π(a|s), such as (in the bandit problem):

at =

{
arg maxk Q(at = k) with probability 1− ε
k ∼ Unif (1, ...,K) with probability ε

Recall (in the bandit case) the action-value function Q(at = k) ≈ q(at = k) = E(rt|at = k)
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FROM BANDITS TO MARKOV DECISION PROCESS

What if the state changes based on our actions?
• Now our experience flows as:

S0,A0,R0, S1,A1,R1, S2,A2,R2, ...

• and the reward distribution (and action-value
function...) should now depend on state

A Markov Decision Process (MDP) is defined by:

p(s′, r|s, a) , p
(
St+1 = s′,Rt = r|St = s,At = a

)
Recall Markov property p(St|St−1, ..., S1) = p(St|St−1)

• future and past are conditionally independent, given the present.
• If I tell you where I am now, the history of how I got here is irrelevant.
• Markovity is not a “without loss of generality statement”... we are

simplifying/approximating (but r-Markov can mitigate)
• MDP can be viewed as a collection of action-switched Markov chains on states (a tensor)
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MARKOV DECISION PROCESSES

The MDP equation (in discrete setting, for clarity):

p(s′, r|s, a) , P
(
St+1 = s′,Rt = r|St = s,At = a

)
• State transition probabilities

p(s′|s, a) = P
(
St+1 = s′|St = s,At = a

)
=
∑

r

p(s′, r|s, a)

...marginalizing over reward distribution

• Reward expectation

r(s, a) , E (Rt|St = s,At = a) =
∑

r

r
∑

s′
p(s′, r|s, a)

...marginalizing over destination state, expecting over reward

• And more...

MDPs offer a highly successful framework for many reinforcement learning problems.
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GOALS, RETURNS, EPISODES

Desire to “maximize reward” now needs more detail... we define return Gt:
• Gt , Rt + Rt+1 + ...+ RT or Gt , Rt + γRt+1 + γ2Rt+2 + ...

• Discount factor γ prioritizes near term rewards

• Generally: Gt =
∑T

k=0 γ
kRt+k and note: Gt = Rt + γGt+1

Now we can define the central functions that help us understand the value of states and actions:
• state-value function for all states s:

vπ(s) , Eπ (Gt|St = s) = Eπ

(
T∑

k=0

γkRt+k|St = s

)

• action-value function for all state-action pairs (s, a)

qπ(s, a) , Eπ (Gt|St = s,At = a) = Eπ

(
T∑

k=0

γkRt+k|St = s,At = a

)

Note
• value functions depend on a policy π
• Better policies increase value...
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EXAMPLE: GRIDWORLD

St =


St−1 if At would leave grid
A′ if St−1 == A
B′ if St−1 == B
St−1 + At else

Rt =


−1.0 if At would leave grid
+10.0 if St−1 == A
+5.0 if St−1 == B
0.0 else

Consider a random policy π(a|s) = Unif (←,→, ↑, ↓), with discount γ = 0.9

vπ(s = A) = 10.0 + 0.9
(

1
4

(−1.0 + 0.9(...)) +
1
4

(0.0 + 0.9(...)) + ...

)
• The Bellman equation recursively defines the value function:

vπ(s) =
∑
a,s′,r

π(a|s)p(s′, r|s, a)
(
r + γvπ(s′)

)
• Bellman equations are central to RL but not entirely needed for our purposes.
• Takeaway: vπ(s) is a solution to some linear equations
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POLICY ITERATION

Key conceptual points:
• A policy π induces value functions vπ(s) and qπ(s, a)

• The value functions capture our expected return→ the objective of the RL problem
• Tools like the Bellman equation (in some settings) let us calculate the value functions
• Improving the policy should increase value...

Consider the action-value function:

qπ(s, a) = Eπ

(
T∑

k=0

γkRt+k|St = s,At = a

)
= Eπ (Rt + γvπ(St+1)|St = s,At = a)

The policy improvement theorem says:
• for deterministic policies π : S → A (simpler than the usual π(a|s))
• if ∃π′, π such that for all s

q(s, π′(s)) ≥ vπ(s)

• then π′ is a better policy than π in the sense that:

vπ′ (s) ≥ vπ(s) ∀s

Notice that a greedy policy π′(s) = arg maxa qπ(s, a) by definition will satisfy! Thus:
• Policy improvement is reasonably straightforward (greedy, ε-greedy,...)
• Policy evaluation (calculating vπ(s)) is necessary in this framework
• Iterating between these two is policy iteration
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OPTIMALITY

Policy iteration will result in an optimal value function v∗

• The value functions will satisfy Bellman optimality

v∗(s) = max
a

q∗(s, a) = max
a

∑
s′,r

p(s′, r|s, a)
(
r + γv∗(s′)

)
q∗(s, a) =

∑
s′,r

p(s′, r|s, a)

(
r + γ max

a′
q∗(s′, a′)

)
• Extracting π∗ from v∗: search over states, choose action to get there.
• Extracting π∗ from q∗(s, a): search over actions, choose max.
• The point: we have means to increase value via our policy→ solving RL

Unfortunately, calculating vπ is only possible in simplistic (known) cases, so much work to do...
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LEARNING vπ(s) WITH TEMPORAL DIFFERENCES

Temporal Difference (TD) learning
• We seek to learn vπ(s) in an online fashion while acting according to policy π(a|s)
• Suppose we have an estimator Vπ(s) of the value function
• Define the TD error as the difference between what you received/anticipated:

δt = rt + γV(st+1)− V(st)

• Update your estimate with that error signal (and step size α):

V(st)← V(st) + αδt

TD learning on vπ :
• is prediction without a model: give me a policy and I’ll tell you its value
• provably convergent (if α is correctly scheduled...)
• fully online, bootstraps estimates from estimates (V)
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LEARNING qπ(s, a) WITH TEMPORAL DIFFERENCES

With a given policy π(a|s), TD learning can be directly applied to learning the action-value
function

δt = rt + γQπ(st+1, at+1)− Qπ(st, at)

Qπ(st, at) ← Qπ(st, at) + αδt

For each update we need (st, at, rt, st+1, at+1). (SARSA)
• enjoys same online/bootstrapping behavior of all TD methods
• on-policy: chooses actions from one policy and learns from the same policy

[Sutton and Barto]
On-policy TD learning is a compromise:
• ideally, the learned policy is optimal and greedy
• but it must behave suboptimally to adequately explore
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Q-LEARNING

Key idea: use two policies and learn from off-policy actions
• maintain an ε-greedy behavior policy to choose actions
• learn (update Q) according to a greedy policy

[Sutton and Barto]
Note key difference between Q-learning and SARSA:
• SARSA chooses at+1 (A′) from the ε-greedy policy
• Q-learning updates Q(s, a) with the greedy maxa Q(st+1, a)

Remember: once q is learned, the optimal policy is simple (intuition: cf. dropout, reg.,...)

π(a|s) =

{
1 a = arg maxa′ q(s, a′)
0 else
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Q-LEARNING

Off-policy TD control (Q-learning) was a major breakthrough in RL
• learns optimal policy while following an exploratory policy
• enables observation of humans (expert/coach imitation) or other agents
• allows reuse of data generated from old policies

[Sutton and Barto]
The problem (with most interesting RL settings):
• the state/action space is too big→ impractical to sample entirely
• the state/action space is continuous→ impossible to sample entirely
• How to scale up Q-learning?

Idea: approximate q(s, a) with a parameterized function Qθ(s, a)...
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CARTPOLE AND OPENAI GYM

We will use the handy gym environment from OpenAI

Important to understand the data

Use available docs/wikis/blogs, but be careful...
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OPENAI GYM

Random actions...

Rendering
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AGENT CLASS

To organize our thinking, we create an Agent class

Agent contains a (fixed) policy and acts according to π(a|s).
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PERFORMANCE OF NAIVE POLICIES

CartPole episode ends when the pole is ±0.2 radians away from center (or T = 200)

Simple fixed policies don’t learn and do rather poorly (∼ 40� 200)
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ELABORATING THE AGENT CLASS

We will approximate Q(s, a) ≈ Qθ(s, a)

• In the simplest case: Qθ(s, a) = θ∂s,∂a, where ∂s denotes a discretized index of s.

• To use Q learning we will need more parameters in our class:
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Q-LEARNING IN PRACTICE

Suppose Q is learned; we behave according to the ε-greedy policy induced by Q:

Questions:
• How is the ε-greedy policy actuated here?
• Where does the greedy choice take place?
• What does the object self.q(observation) represent?
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Q-LEARNING IN PRACTICE

Reminder: the Q-learning algorithm

In code:
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Q-LEARNING IN PRACTICE

Reminder: the Q-learning algorithm

That core Q update:

Note the difference between the behavior policy and the learned policy; this is off-policy
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PERFORMANCE OF SIMPLE Q-LEARNER

Reminder: Q-learning in code

Vastly improved performance

Note some dips in performance in some episodes... why?
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REMINDER: WHEN ε-GREEDY IS USEFUL

We used an ε-greedy behavior policy to explore

Once we have learned q(s, a), we now only want to exploit. Control without learning:

Greedy performance (render and watch the learned policy)

Advanced Machine Learning 105 / 163



INTERROGATE Qθ(s, a)

Inspecting the learned Q function
• ...clarifies what the Q function really is
• ...develops intuition for how the control agent performs
• ...sanity checks what the algorithm has learned
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FROM Q TABLES TO DEEP Q NETWORKS

The simple tabular function:
• is easy to learn
• has only a few parameters
• can not share information across states
• can not scale up to large state spaces or large action spaces

Idea: make Qθ(s, a) a deep network

[Mnih et al (2015)]
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DEEP Q NETWORKS

Key enabling idea: maintain a memory of data to use as experience replay

Because Q-learning is off policy, this buffer enables us:
• to explore with an ε-greedy behavior policy, gathering plenty of experience data
• use those experiences to replay a mini-batch (si, ai, ri, si+1)

• train a network in our usual supervised fashion, with the objective:

min
θ

(yi − Qθ(si, ai))
2

where yi =

{
ri if st+1 is terminal
ri + γ maxa Qθold (si+1, a) else

• Note: θold simply indicates that yi is a fixed target for training (0 gradient wrt θ).
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BUILD A NETWORK

Now we need a network Qθ(s, a)

• it will take as input a state st ∈ R4

• it will return as output a vector
[

Qθ(st, at = 0)
Qθ(st, at = 1)

]
• it will be a regression network (ie not the usual softmax as in CNN)
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REMINDER: TAKE INCREMENTAL STEPS

Caution:
• it is easy to get lost between Q-learning, the network, tensorflow, etc.
• make good design choices (eg abstract as much tf as possible into Network class)
• test the network before involving the Q-learning complexity

Now I know I have a working regression network and a working Q-learning algorithm...
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AUGMENT THE AGENT

Now the agent
• is initialized with a replay buffer and a Q network
• has a method to gather experience (build up the replay buffer)
• behaves according to the usual ε-greedy policy (note the network call!)

Now I know I have a working regression network and a working Q-learning algorithm...
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Q-LEARNING

Conceptually (almost) identical
• The same fundamental loop of state, action, reward, state, (q update),...
• Small change: write experience to Agent buffer for later replay
• Small change: write a None state to recognize failure (why does replay necessitate this?)
• And a bit of the usual tf overhead (without tb for clarity)

Note the conceptual importance of thoughtful design/abstractions to simplify implementation
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UPDATING Qθ(s, a)
The only novel complexity here is taking steps in θ to optimize Qθ(s, a). Recall:

min
θ

(yi − Qθ(si, ai))
2

where yi =

{
ri if st+1 is terminal
ri + γ maxa Qθold (si+1, a) else

In the Agent class:

Note:
• exploits/requires the None terminal state
• computational efficiency: here sacrificed code clarity for speed (5− 10×)
• all tf is hidden in q.train
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LEARNING AND CONTROLLING CARTPOLE WITH DQN
We used an ε-greedy behavior policy to explore (note: large ε found empirically useful in DQN)

Once we have learned Qθ(s, a), we now only want to exploit. Control without learning:

Greedy performance (render and watch the learned policy)
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STATE OF THE ART DQN
From here simply elaborate Q network (includes CNN frontend)

Learn the Q function for Pong

[Mnih et al (2015)]
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STATE OF THE ART DQN
Superhuman performance across a range of different games

[Mnih et al (2015)]
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REINFORCEMENT LEARNING: WHERE NEXT

Of course, there is a great deal of underlying empiricism in DQN and RL generally:
• hyperparameter and network adjustment
• training runs and replay buffers
• data preprocessing
• early training policies (eg in CartPole: do better by learning Qθ from left-right)
• etc...

Where to go from here:
• Play with the given DQN implementation (see hw5)
• Consider project 4 for final project
• Get the Atari emulator in OpenAI gym

(https://github.com/openai/gym#atari)
• Proceed to the next advance: asynchronous advantage actor critic (A3C) RL

(https://arxiv.org/pdf/1602.01783.pdf)
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RECURRENT NEURAL NETWORKS



TRANSITION TO RNN: RECALL TEXT DATA

Can we predict the next word in a text?
• In language, the co-occurrence and order of words is highly informative.
• This information is called the context of a word.
• We can use such a model to generate text of arbitrary length

Example: The English language has over 200,000 words.
• If we choose any word at random, there are over 200,000 possibilities.
• If we want to choose the next word in

There is an airplane in the __

the number of possibilities is much smaller.

Context information is well-suited for machine learning:
• By parsing lots of text, we can record which words occur together and which do not.
• Reminder (from previous class): the vanilla models based on this idea are n-gram models.
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BIGRAM MODELS

Bigram model:
• A bigram model represents the conditional distribution

Pr(word|previous word) =: Pr(hl|hl−1) ,

• wl is the lth word in a text.
• Bigram models are a simple Markov chain on words: a family of d multinomials, one for

each possible previous word.
N-gram models
• More generally, a model conditional on the (N − 1) previous words

Pr(hl|hl−1, . . . , hl−(N−1))

is called an N-gram model (with the predicted word, there are N words in total).
• Unigram model: the special case N = 1 (no context information)

Transitioning representations (example bigram model)

probabilistic modelling view RNN functional view (xt = prev word)

ht−1 ht ...

xt−1

ht−1

xt

ht

...

...
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LEARNING SHAKESPEARE (1)

Unigram Model

To him swallowed confess hear both. Which.
Of save on trail for are ay device and rote life
have

Every enter now severally so, let

Hill he late speaks; or! a more to leg less first
you enter

Are where exeunt and sighs have rise
excellency took of.. Sleep knave we. near; vile
like

Bigram Model

What means, sir. I confess she? then all sorts,
he is trim, captain.

Why dost stand forth thy canopy, forsooth; he is
this palpable hit the King Henry. Live king.
Follow.

What we, hath got so she that I rest and sent to
scold and nature bankrupt, nor the first
gentleman?

Enter Menenius, if it so many good direction
found’st thou art a strong upon command of
fear not a liberal largess given away, Falstaff!
Exeunt

[Jurafsky and Martin, "Speech and Language Processing", 2009]
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LEARNING SHAKESPEARE (2)

Trigram Model

Sweet prince, Falstaff shall die. Harry of
Monmouth’s grave.

This shall forbid it should be branded, if
renown made it empty.

Indeed the duke; and had a very good friend.

Fly, and will rid me these news of price.
Therefore the sadness of parting, as they say,
’tis done.

Quadrigram Model

King Henry. What! I will go seek the traitor
Gloucester. Exeunt some of the watch. A great
banquet serv’d in;

Will you not tell me who I am?

It cannot be but so.

Indeed the short and the long. Marry, ’tis a
noble Lepidus.

[Jurafsky and Martin, "Speech and Language Processing", 2009]
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COST

probabilistic model RNN view (xt = prev word)

ht−1 ht ...

xt−1

ht−1

xt

ht

...

...

Basic Markov models scale terribly with context size:
• N-gram model considers ordered combinations of N distinct words
• Suppose a text corpus contains 100,000 words. Thus 100000N = 105N parameters
• As such, N-gram models are conceptually valuable but won’t scale
• Long-timescale context is critical. Consider the classic example:

“I am from California and lived in various places for many years. Therefore I speak __.”

• This cost only gets worse for hidden Markov models with (possible) inputs
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RECURRENT NEURAL NETWORKS

Key idea: ht = gθ(ht−1, xt). A hidden state carries longer-term context information
• RNNs use a neural network for this evolution of hidden state (but it needn’t be)
• A single, fixed network gθ governs transitions (cf. HMM transition matrix)

Output can be ht Output can be yt|ht (cf. Markov model vs HMM)

xt−1

ht−1

xt

ht

...

...

xt−1

ht−1

yt−1

xt

ht

yt

...

...

...

Warning:
• There is rarely agreement on what a particular structure means (eg LSTMs; cf. CNNs)
• There is no definitive text (though many papers) articulating these concepts
• ...but RNNs are rapidly evolving and producing some of the most exciting results in AI
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RNN SIMPLE EXAMPLE

Consider the following simple character model:
• alphabet consists of {h, e, l, o}, one-hot encoded
• hidden layers evolve as ht = σ (Whhht−1 + Wxhxt)

... (σ is usual activation nonlinearity, here tanh)

• output yt = Whyht (think logits... then take softmax)

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Intent: ht carries longer-range context, without exponential parameters of N-gram models.
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VANISHING GRADIENTS

Recall the vanishing gradient discussion from deep CNNs:
• Backprop is the chain rule, multiplying Jacobians together repeatedly
• Exponential decay of gradients results
• Simple demonstration: repeated linear/tanh/linear/tanh/...

[Goodfellow et al 2016, ch10]

• Particularly relevant in RNNs: long-range context ignored over short-range

Much work has gone into designing clever network structures to persist long-range context
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LONG SHORT-TERM MEMORY NETWORKS

Long Short-Term Memory Networks are the de facto standard for RNN memory context

• Custom engineered network architecture to have a notion of memory
• (recall CNNs: hand-chosen architecture to exploit problem structure)
• Origin [Hochreiter and Schmidhuber 1997]; many times improved and iterated since then
• Only recently (2014) has a second major alternative architecture arisen (next class)

Understand the abstraction: there is simply a network gθ evolving hidden state

Original RNN Full LSTM

ht = tanh (Wxhxt + Whhht−1 + bh)

ft = σ
(
Wxf xt + Whf ht−1 + bf

)
it = σ (Wxixt + Whiht−1 + bi)
c̃t = tanh (Wxcxt + Whcht−1 + bc)
ot = σ (Wxoxt + Whoht−1 + bo)
ct = ct−1 � ft + c̃t � it
ht = tanh (ct)� ot

Pictures from http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Notation consistent with [Jozefowicz et al 2015]
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LSTM CELL STATE

Rather than hidden state ht , we now pass ht and a cell state ct

• This is no problem: define h̄t ,

[
ht
ct

]
, and it is still an RNN.

The cell state:
• provides a channel for long-range information/memory to propagate forward
• without corrupting/compromising the hidden state (which is directly output relevant)

Note: the LSTM network architecture is often (inconveniently?) called an LSTM cell.
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LSTM FORGET GATE

Now we must consider how the hidden state and cell state interact. First, the forget gate:
• Conceptually, ft chooses to forget or pass the current cell state
• Elementwise forgetting, so it is doing so individually for each unit (the width) of ct

ft = σ
(
Wxf xt + Whf ht−1 + bf

)
The forget gate
• can be thought of as projecting dimensions of xt and ht−1

• ... that remove or persist certain dimensions of ct

• Convince yourself that this is a useful way to free or hold data in memory
• Note: σ must be ∈ [0, 1], but can be sigmoid, tanh, etc...
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LSTM INPUT GATE

Continuing hidden state and cell state interaction. The input gate:
• If ft chooses to forget or pass the existing cell state...
• Input it chooses what to pass in as a new cell state
• Again elementwise...

it = σ (Wxixt + Whiht−1 + bi)

c̃t = tanh (Wxcxt + Whcht−1 + bc)

The input gate
• can be thought of as projecting dimensions of xt and ht−1
• ... that load or ignore certain dimensions of the new proposed cell state c̃t

• Convince yourself that this is a useful way to load/not load data into memory
• Note: again σ must be ∈ [0, 1], but can be sigmoid, tanh, etc...
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LSTM CELL STATE AGAIN

The effects of the forget and input gates are then loaded onto the cell state ct:
• Elementwise action of persisting/overwriting the long-term memory cell ct

ct = ct−1 � ft + c̃t � it

Critical to intuition:
• This is neural networks, so we hope to learn from data when to forget, load, etc.
• All operations here are elementwise, so many different loads/persists occur in parallel
• So far we haven’t affected ht yet...
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LSTM OUTPUT GATE

Continuing hidden state and cell state interaction, but now to ht . The output gate:
• If ft chooses to forget or pass, and it chooses what to pass...
• ot chooses when to write out the cell ct to ht .

ot = σ (Wxoxt + Whoht−1 + bo)

ht = tanh (ct)� ot

Same as before: the output gate is a useful way to send data onto ht

Note the key and complementary differences here between ht and ct;
• ht is either the output or parameterizes the output yt|ht .
• ht thus has short-term or more immediately relevant data
• ct can persist over long-range periods and needn’t (directly) drive output (ot)
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LONG SHORT-TERM MEMORY NETWORKS

We have built up the structure of a standard LSTM

• there are many minor variants
• but all share the basic forget/input/output and cell/hidden components
• thankfully, neural network libraries abstract all these blocks and parameters away
• See for example tf.contrib.rnn.LSTMCell
• The key reminder: like a CNN, this is just a (highly engineered) neural network gθ

Original RNN Full LSTM

ht = tanh (Wxhxt + Whhht−1 + bh)

ft = σ
(
Wxf xt + Whf ht−1 + bf

)
it = σ (Wxixt + Whiht−1 + bi)
c̃t = tanh (Wxcxt + Whcht−1 + bc)
ot = σ (Wxoxt + Whoht−1 + bo)
ct = ct−1 � ft + c̃t � it
ht = tanh (ct)� ot
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SHAKESPEARE DATA

We will treat all of Shakespeare as a long string

...
COMINIUS:
It is your former promise.

MARCIUS:
Sir, it is;
And I am constant. Titus Lartius, thou
Shalt see me once more strike at Tullus’ face.
What, art thou stiff? stand’st out?

TITUS:
No, Caius Marcius;
I’ll lean upon one crutch and fight with t’other,
Ere stay behind this business.
...

This string:
• has length 4573338
• can be one-hot encoded with vectors xi ∈ R67, namely:

Recall N-gram models on words. Now we model Shakespeare character by character
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RNN ANALOGY TO A BIGRAM MODEL

Recall:
• Each xt is the previous character (context!)
• Network predicts ht from xt

• No recurrence here (yet)...
xt−1

ht−1

xt

ht

...

...

----Post-training Sample----
pawhenyyrcato he f to avyrod
T: couwendory:

s wEI :
Tt
ILouthe hair’le,e er s the;Kt t t u

Notice:
• This is multinomial, so we can sample characters from the network output
• Try an easier dataset:

----Pre-training Sample----
nodz nppvqfvfu qfyxbrvmathpengrlvgkqtlaozzdct otfrwdekrkdp wircabmcaxwntgvnkwlvqgxyaweuawxm

----Post-training Sample----
ick juick fog oved fog the jumped jumpe rown jumpn quick brog the jumpe therown fove fown

• We could also predict with a more straightford np.argmax
----Pre-training Sample----
rfvydydydydydydydydydydydydydydydydydydydydydydydydydydydydydydydydydydydydydydydydydydydyd

----Post-training Sample----
jumpe the the the the the the the the the the the the the the the the the the the the the t
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BACKPROPAGATION THROUGH TIME

As usual we seek to take gradients in θ:

xt−1

ht−1

yt−1

xt

ht

yt

...

...

...

But wait...

Context:
• Though |θ| is manageable, the chain rule can extend arbitrarily far back in time
• We will truncate at some length (here T = 50) and call that the context of ht

• We believe that this depth will provide adequate approximation to the true gradient...

Advanced Machine Learning 136 / 163



CONTEXT IN tensorflow
We will train on context batches of length T = 50 (or similar)
• Unlike all previous batching, context batches are sequential
• tf must loop through to propagate the hidden state ht

self.rnn_layer carries same parameters, but ht is now recurrent and can now be trained:
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1 LAYER RNN TRAINED ON SHAKESPEARE

Notes:
• Iterations are each batches of T = 50 context, sequentially, with h0 = [0, ..., 0]

• Effectively 7 epochs (full passes through text)
• Single hidden layer with n = 64 units, fully connected to logits (here ∈ R67)
• Accuracy/loss is averaged over batch in the usual way
• Learning occurs, and frankly high accuracy is unlikely (even undesirable?)
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FORWARD SAMPLING TEXT

Consideration:
• How to forward sample text?
• Where do we get ht−1?
• How to step +1 when we wrote the code to operate on a context of depth T = 50?

Now the RNN can fantasize Shakespeare texts...
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1 LAYER RNN TRAINED ON SHAKESPEARE

Very early in training:
______[epoch:0,batch:6000,all batches:6000] has loss 3.277571439743042______
do si, pur et hirb ond aopm bohcon mttt ahr home we, peme thaucno, ior rere lethe mias iol lh

wtye thot Toates ases n wnmdsd tott anl mhew shers thie caeuame soece cUpfng-r Sowsedt mo tiree
m oie the

Later in training:
______[epoch:3,batch:21000,all batches:295398] has loss 1.7853922843933105______
And sin, I will and have my love the seet the singed the sear and the wart,
The still the have you the singly and that his a dider his and and the have to her for the still and the mangers,
And the hav
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USING THE RNNCell ABSTRACTION IN tf

Tensorflow has an excellent abstraction to handle all the recursion... if you know how to use it.

Be careful with LSTMStateTuple; know why and how to use it
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SIMPLE LSTM TRAINED ON SHAKESPEARE
Very early in training:
______[epoch:0,batch:6000,all batches:6000] has loss 3.478269338607788______
vh ho osnth twh eain r ovs shutn haoe hyr lh he oonctlerk

aa sEddh serotste
nue ls ldlhe uI hee ds voosit eanuu e sttsht ohme t e’nhcd trost
ti tewe le?,o hus:ee pero rh so heetbtuy m oteimnowny

Later in training:
______[epoch:3,batch:21000,all batches:295398] has loss 1.5456037521362305______
And the stanter to the well the stange.

PRINCE:
I wall me the with a marter to the sir.

PRINCE:
He sould the with a tould and the sould here
The lear and the words and the sell the werts.

PRINCE:
An
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BETTER LSTM TRAINED ON SHAKESPEARE
Trained on character sequences alone!
______[epoch:6,batch:80000,all batches:628796] has loss 1.6592674255371094______
uch a stranger to see thee and the word.

APEMANTUS:
And there is not for the tooth that we may be so
must be a more and the man and man the soor
And the field to my lord of the company.

TIMON:
The so

______[epoch:6,batch:83000,all batches:631796] has loss 1.1526007652282715______
John, the world
That will be seen the sense of the world,
And the shall be the stranger than the hand
That we shall be a brother to be the word.

PISANIO:
I will not the father than the strong of his g
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BIGGER LSTM, TRAINED LONGER

256 unit LSTM trained for 15 epochs
l the the the cound the serest the here.

CARONES:
The will and the the the come the gorters and
And the hare the there the shere the pranged
The lave the manter the the could with the shere
And the co

QUEEN MARGARET:
I will not be a man that have been clothes
And have the false than the fortunes of them.

QUEEN MARGARET:
I will not be a state of men and thee,
And therefore like a curse of the best

You shall see the state of the charge of the
streather of the moon of the proceased with him.

KING LEAR:
Why, they are not so not the hold him to me,
The preating perceive the good field of the
sense

I will not hear thee to the counter souls.

Clown:
What is this thing?

SIR TOBY BELCH:
I will not think the streets of my foes and the state
of this and that thou art a good and beard.

SIR TOBY BELC
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INCREASING EXPRESSIVITY WITH STACKED LSTM

How to go further:

• LSTM are an input-output function...

• ...so can be composed...

• Elaborate to stacked LSTM cells.

Tensorflow makes this easy:
cell = tf.contrib.rnn.LSTMCell(n_hidden)

stack = tf.nn.rnn_cell.MultiRNNCell([cell]*n_layers)

Stacked LSTM and their variants are the workhorse of modern AI with sequence data.

Advanced Machine Learning 145 / 163



GATED RECURRENT UNITS

Notice
• LSTM offers major increases in performance and long-range dependency modeling
• That said, it’s bit difficult to argue the necessity of ft, it, ot in the LSTM
• Other choices, based on update gate zt , form the Gated Recurrent Unit [Cho et al 2014]

Original LSTM Gated Recurrent Unit (GRU)

ft = σ
(

Wxf xt + Whf ht−1 + bf
)

it = σ
(

Wxixt + Whiht−1 + bi
)

c̃t = tanh
(

Wxcxt + Whcht−1 + bc
)

ot = σ
(

Wxoxt + Whoht−1 + bo
)

ct = ct−1 � ft + c̃t � it
ht = tanh (ct)� ot

zt = σ
(

Wxzxt + Whzht−1 + bz
)

rt = σ
(

Wxrxt + Whrht−1 + br
)

h̃t = tanh
(

Wxhxt + Whh
(

rt � ht−1
)
+ bh

)
ht = (1− zt)� ht−1 + zt � h̃t

Does this matter/help? An ongoing debate:
• See [Jozefowicz et al 2015] for a thorough empirical comparison of architectures
• There is no theory to suggest these choices, though sensible, are necessary or precise
• Try it yourself: compare tf.contrib.rnn.LSTMCell to tf.contrib.rnn.GRUCell
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RECURRENT NEURAL NETWORKS: WHERE NEXT

Many of the usual tricks are essential to RNN performance
• validation data, batch normalization, dropout, etc...

...conveniently: tf.nn.rnn_cell.DropoutWrapper(cell, output_keep_prob=0.8)

Where to go next / key ideas that we have not covered:

Bidirectional RNNs Multi-input/multi-output (e.g. seq2seq)

Word embeddings (e.g. word2vec) Attention

RNNs are a massive area of current and exciting development
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IMPLICIT PROBABILISTIC MODELS



MODELING

A central problem in statistics and machine learning is choosing a model:

M =
{

pφ : φ ∈ Φ
}

Prescribed probabilistic models:
• form pφ(x) directly
• Most of statistics (and what we’ve seen in these courses) is of this form
• Gaussian, uniform, ...

Implicit probabilistic models:
• Partition the randomness and the structure into two different problems
• Generate latent zi ∼ p0(z) and compute xi = gφ(zi) with some parameterized function gφ
• Induces a (possibly) more complex model/family of distributions pφ(x)

• You have seen this before in your first stats class (inversion sampling):

z ∼ Unif (0, 1) x = F−1
φ (z) → x ∼ Exp(φ)

Fφ is the cdf of the exponential distribution, Fφ(x) = 1− exp(−φx), with F−1
φ

(z) = −φ log(1− z)

• Natural setting in differential equations, ecology, weather, finance, and many other fields
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IPMS WITH DEEP NEURAL NETWORKS

Idea
• Sample randomness from a particularly easy distribution z ∼ N (0, I)
• Use a deep neural network as the structure map gφ
• Best of both worlds? ...flexible, expressive pφ(x) that is easy to sample and learn

1. Variational inference q∗(z) = arg minq∈Q KL(q||p)

• Today: the variational autoencoder of [Kingma and Welling 2014]

2. Generative modeling

zi ∼ N (0, I) → gφ(zi) →

• Today: the generative adversarial network of [Goodfellow et al 2015]
• The paper [Mohamed and Laksminarayanan 2016] clarifies particularly well
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RECALL VARIATIONAL INFERENCE

We want to solve an inference problem where the correct solution is an “intractable”
distribution with density p(z|x) (e.g. a complicated posterior in a Bayesian inference problem):
• We stipulate a variational model (a family of simpler distributions)

Q = {qφ(z|x) : φ ∈ Φ}

• If the posterior density is p(z|x) =
p(x|z)p(z)

p(x) , then

q∗(z|x) = arg min
q∈Q

KL(q(z|x)||p(z|x)) .

• Approximate a complicated distribution with the closest member of a tractable family

The ELBO (evidence lower bound) objective:

KL(q(z|x)|p(z|x)) = Eqφ

(
log

q(z|x)

p(z|x)

)
= E (log q(z|x))− E (log p(z|x))

= E (log q(z|x))− E (log p(z, x)) + log p(x)

∝ Eqφ
(
log qφ(z|x)

)
− Eqφ (log p(z, x))
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WORKING WITH THE ELBO

ELBO:

F(φ, θ) = −Eqφ
(
log qφ(z|x)

)
+ Eqφ (log pθ(z, x))

• Note negation (a convention)
• Also introduction of θ

View this setup as dimension reduction:
• pθ(x|z) is a probabilistic decoder, converting latent code z to observed data x

• qφ(z|x) is a probabilistic encoder, converting observed data x to latent code z

• Now we must choose our approximating family Q...
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VARIATIONAL FAMILY Q

ELBO:

F(φ, θ) = −Eqφ
(
log qφ(z|x)

)
+ Eqφ (log pθ(z, x))

• Note negation (a convention)
• Also introduction of θ
• Suppose z ∈ Rd and x ∈ X

Neural networks as flexible, expressive function families (again):

qφ(z|x) = N
(
µφ(x), σ2

φ(x)
)

• Here both µφ and σφ are neural networks that map X → Rd

• Perhaps easier to view this from the perspective of a noise variable ε:

ε ∼ N (0, Id) and z = µφ(x) + σφ(x)� ε → z|x ∼ N
(
µφ(x), σ2

φ(x)
)

• This reparameterization trick makes it simple to sample from qφ(z|x)

• Note: this gaussian is one basic choice, but many others are used
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STOCHASTIC OPTIMIZATION OF φ

We still have the issue of calculating (and differentiating!) these expectations:

arg max
φ

F(φ, θ) = arg max
φ
−Eqφ

(
log qφ(z|x)

)
+ Eqφ (log pθ(z, x))

Turn to stochastic optimization and mini-batch gradient descent:
• Draw a noise minibatch ε1, ..., εM iid fromN (0, I)
• Draw a data minibatch x1, ..., xM from the dataset
• Compute zm = µφ(xm) + σφ(xm)� εm

• Approximate objective:

F̂(φ) = −
1
M

M∑
m=1

log qφ(zm|xm) +
1
M

M∑
m=1

log pθ(zm, xm)

• Take its gradient and follow SGD (Adam, etc.) in the usual way until an optima is reached

Optimizing this objective:
• Learns a posterior approximation qφ(z|x) that can be queried for any data point x

• can be done with a prescribed model p(x, z) to do inference
• or can also take gradients in θ and learn pθ → dimension reduction/autoencoding
• We call this general approach variational autoencoding (VAE)
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VARIATIONAL AUTOENCODER IN ACTION

Learn the autoencoder and then:
• Choose a point zi in latent space (not drawing from the posterior!)
• Decode this point with xi ∼ pθ(xi|zi):

Learns a manifold of simple images and how to generate...
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FROM VAE TO GAN

Variational autoencoders:
• ...are designed to do inference
• ...are seen as dimension reduction
• can generate, but that is not their specific design...

A useful analogy for the idea of directly solving the data generation problem:

https://www.secretservice.gov/data/KnowYourMoney.pdf
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GENERATIVE ADVERSARIAL NETWORKS

From a deep learning perspective:
• True data samples xD

i ∼ pdata(x)... (minibatch) draws from the training set
• The latent code zi ∼ N (0, I)
• The generator neural network xG

i = GφG (zi)

• The discriminator neural network DφD (xi)→ [0, 1]

[image from http://cognitivechaos.com/understanding-generative-adversarial-networks/]

• The discriminator classifies fake vs real images
• The generator adapts to fool the discriminator
• This two-player game is repeated...
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GENERATIVE ADVERSARIAL NETWORKS

Specify the following objective:

min
φG

max
φD

[
Ex∼pdata

(
log DφD (x)

)
+ Ez∼p(z)

(
log
(
1− DφD

(
GφG (z)

)))]
• Dφd (xi) gives the probability (∈ [0, 1]) that xD

i is genuine (from data distribution)

• 1− DφD

(
GφG (zi)

)
gives the probability that xG

i is fake

• minφG attempts to minimize the probability of being caught as a fake
• maxφD attempts to maximize discriminability (reals ↑, fakes ↓)...
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GENERATIVE ADVERSARIAL NETWORKS

min
φG

max
φD

[
Ex∼pdata

(
log DφD (x)

)
+ Ez∼p(z)

(
log
(
1− DφD

(
GφG (z)

)))]

Here:
• Discriminator D(x) (blue); generative distribution pG(x) (green); true pdata(x) (black)

• Second panel: if arbitrarily expressive, maxD optimizes to DφD (x) =
pdata(x)

pdata(x)+pG(x)

• If everything works, eventually pG is indistinguishable from pdata...
Note:
• Do not take this objective/optima as absolute truth: original idea, several times updated
• Theory is starting to appear...
• Discuss mode collapse and learning/generating the training set
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GAN IN ACTION

(right column images are nearest neighbor training points)
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GAN IN ACTION

Is this good? What could we do with it if it were?
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GAN IN ACTION
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SOME CONTEXT

Implicit probabilistic modeling with neural networks is an exciting area of development:
• Heavily demonstrated in the computer vision space
• Expanding to many areas of statistical modeling
• ...including my own research:

• dynamical systems / state space models [https://arxiv.org/abs/1511.07367]

• maximum entropy modeling [https://arxiv.org/abs/1701.03504]

• And many more...

That said, serious skepticism about IPM (and neural networks generally) still exists:
• Serious concerns about generalization in GAN [https://arxiv.org/abs/1703.00573]

• Not even clear why neural networks work well [https://arxiv.org/abs/1611.03530]
• Heard last year at a major conference: “Deep learning is unrigorous alchemy”...

Deep learning, and in particular the applications and algorithms we have learned here, are
both very exciting and not entirely understood. Have fun and be thoughtful!
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