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Introduction

Constantly, we find ourselves trying to understand the cause and effect (or causal)

relationships of what we observe in the world around us. This can range from ques-

tions at an individual or personal level (“Why is my stomach currently grumbling?”),

to handling concerns on the scale of societies or the entirety of humanity or nature

itself. Epidemiologists investigate causal relationships between health - for example,

the likelihood of developing a certain type of cancer - and the factors which have an

effect on this, may they be genetic, environmental or related to lifestyle. Sociologists

attempt to discover the causes of order and disorder within a society. Geneticists

are concerned with what genes, either by their addition, removal or allele type, give

rise to certain characteristics or behaviours of a cell or living organism.

Before trying to answer these types of questions, we first need to clarify what we

mean by “causality” and a “causal” relationship. Causality is the means by which

one process (the cause) may be linked with another (the effect) through the passage

of time. We say that the prior is causal for the latter if upon the action of the prior,

through either some deterministic or probabilistic mechanism, the effect is more

likely to occur than if we did not impose the cause. Therefore, causal relationships

are simply the statements about causality we can make given a set of processes or

events.

When handling questions about causality, we are concerned with what data we

can use when trying to examine causal relationships, how it can be used to help

answer questions relating to causality, and the form these questions take. Although

the first and third questions are also of interest to the statistician, the question

of “how” is the most important. Answering this also requires some work, as the

classical tool of regression is no longer suitable here. The reason for this is best

summed up by the paradigm “correlation does not imply causation”. To explain

further, the presence of correlation is a necessary condition for causality, but not

sufficient. This is because generally there is some information about the causal effect

of X on Y which is not identifiable from the regression function E[Y |X].
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For these reasons, the development of new tools to help answer causal questions

was necessary; nowadays we find ourselves with a variety of different methodologies

at our disposal. As hinted to previously, these require incorporating some assump-

tions about the structure of causal relationships, and the questions we want to ask

from them, in order to draw conclusions about them from the data. As there are a

multiplicity of approaches, it is also worth considering the assumptions and impli-

cations of one approach over another.

We begin in Section 1 by detailing one of the more classical frameworks used

to perform causal inference, that of structural equation modelling. We then focus

on the method of invariant prediction as introduced by Peters, Bühlmann, and

Meinshausen [2016]. This begins by discussing in Section 2 how this method can be

used to perform causal inference. When there are a large number of covariates, the

method proposed in Section 2 becomes computationally infeasible, and so we discuss

how to pre-screen for potentially identifiable causal predictors in Section 3. We then

discuss some of the links and differences between invariant prediction and structural

equation modelling in Section 4. We end by applying some of these methods to

simulated data in Section 5.
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Section 1

Structural equation modelling

Here we give an overview of structural equation modelling, which uses directed

graphs to represent the causal structure of random variables, containing information

about the dependencies introduced as part of the data generating process. Formally,

a structural equation model for a random vector X ∈ Rp is a system of equations

Xi = fi (XSi
, εi) for i = 1, . . . , p (1.1)

for some subsets Si ⊆ {1, . . . , p} \ {i} and functions fi : R|Si| × R→ R such that

• the ε1, . . . , εp are jointly independent (but can differ in distribution), and

• the graph G = (V,E), with vertex set V = {1, . . . , p} and edge set E such

that pa(i) = Si for i = 1, . . . , p, is a directed acyclic graph.

An example is given in Figure 1.1. Appendix 1 gives a brief summary of the basic

theory of directed acyclic graphs. We note that a structural equation model specifies

the distribution of X, as given a topological ordering π of G, we can build Xi as a

function of επ−1(1), . . . , επ−1(π(i)) for i = 1, . . . , p.

Although a structural equation model determines the joint distribution of the

Xi, it also provides more information about how the variables affect each other.

Consider the following two (basic) structural equation models:

X1 = 2X2 + ε1, ε1 ∼ N(0, 1) Y1 = −2Y2 + ε′1, ε
′
1 ∼ N(0, 1)

X2 = ε2 ∼ N(0, 1) Y2 = ε′2 ∼ N(0, 1)

Although both (X1, X2) and (Y1, Y2) have the same distribution, we see that X2

has a “positive” effect on X1, whereas Y2 has a “negative” effect on Y1. If we were

given only the joint distribution of X, we could not distinguish it from Y . Using a

structural equation model is one method which allows us to do so.
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1 2

3 4

X1 = 2 + ε21, ε1 ∼ U [1, 2]

X2 = X1 −X2
3 +X4 + ε2, ε2 ∼ N(0, 1)

X3 = −X1 log(ε3), ε3 ∼ U [0, 1]

X4 = ε4, ε4 ∼ N(0, 2)

Figure 1.1: An example of a structural equation model (under the assumption that

the εi are independent) and its associated directed acyclic graph.

Furthermore, by using a structural equation model, we are assuming that there

are no feedback loops between random variables in the model, as the associated

graph G is a directed acyclic graph. Depending on the context, this may either

a desirable or undesirable property. For example, in many biological processes,

such as homoeostasis, feedback loops are present, meaning we cannot model the

relationships between (say) hormonal levels, body temperature, blood glucose levels

etc. using a structural equation model as defined here.

1.1 Interventions

An important feature of a structural equation model is that the defining equations

allow us to see the behaviour and distribution of X after having “intervened” within

the system. These can represent different experimental settings, such as modelling

when we fix the concentration of a reagent in a chemical reaction, or indicating

whether a patient is receiving a placebo or an actual treatment.

They can also represent different observational settings, where the distribution of

a subset of the Xi may change when examining different populations. For example,

suppose we are looking to see whether smoking tobacco is causal for the development

of lung cancer. If it were, we would expect to see this relationship occur regardless

of the proportion of smokers in a certain population1. By treating the observational

setting of different populations as interventional settings - even though we could

never create a randomized experiment to carry this out - we could potentially use

1Provided we did not intervene and give a proportion of the population lung cancer. This
would be uninformative, infeasible and unlikely to be approved by any ethics board anywhere.
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this to infer causal information2.

With reference to the structural equation model in (1.1), which we refer to as

S, we now formally define what an intervention is (see e.g Peters [2015]). Letting

A ⊆ {1, . . . , p} be non-empty, we say that an intervention on the variables XA in S
is a structural equation model S̃ where

Xj =

fj(Xpa(j), εj) for j /∈ A (f , pa(j) and εj as according to S)

f̃j(Xp̃a(j), ε̃j) for j ∈ A (for some f̃j, p̃a(j) and ε̃j)
(1.2)

and we require that {εj | j /∈ S} is independent of {ε̃j | j ∈ S}. We frequently denote

the interventional system by

X | do
(
Xj = f̃j(Xp̃a(j), ε̃j) for j ∈ S

)
. (1.3)

This is not to be confused with a conditional distribution, which is denoted by X |Z
(for example). Some special cases of interventions include:

• a perfect or do-intervention [Pearl, 2009] when S = {j} and Xj = a under S̃;

• a structural intervention [Eberhardt and Scheines, 2007] when S = {j} and

pa(j) = p̃a(j).

These specializations can be easily generalized to handle interventions on multiple

random variables.

We can now determine what variables give rise to causal effects in a structural

equation model by reference to interventions. We may expect that X has a causal

effect on Y if Y is not independent of X for any distribution of X, where the freedom

in definition of X allows us to identify that X causes Y rather than vice versa.

However, this intuition is subtlety incorrect, as the following example illustrates. If

we have a structural equation model

Y = X1[X > 1] + ε1, X = ε2, ε ∼ N(0, I2),

then we would agree that X has a causal effect on the value of Y . We also see

2Of course, how to do so is another question entirely. To begin, this requires being able
to agree on what a “population” actually is, and to argue that the membership to a particular
population does not have a causal effect in itself. Afterwards, there is then the matter of converting
observational information to interventional information. Although these are interesting questions
to consider, we do not do so any further.
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that X and Y are not independent; however, this is not always preserved under

interventions. For example, if we perform do(X = ε̃1) where ε1 ∼ U [0, 1], then

under the interventional distribution Y and X are independent.

The correct intuition is instead that there exists a interventional distribution for

X such that, in the intervened model, Y and X are not independent. Formally, we

say that there is a total causal effect from Xj to Xk in a structural equation model

if there exists ε̃ such that, under X | do(Xj = ε̃), Xj and Xk are not independent.

1.2 Conditional independence of random variables

The definition of a total causal effect inspires the question of how we can generally

infer independence statements easily from a structural equation model. To begin,

we say that P satisfies the global Markov property with respect to a directed acyclic

graph G if for all A,B, S ⊆ {1, . . . , p} which are pairwise disjoint, whenever A and

B are d-separated by S we also have that XA ⊥⊥ XB|XS.

Supposing that P is absolutely continuous with respect to a product measure

(say with density f), it is equivalent to the Markov factorization property [Lauritzen,

1996, Theorem 3.27], which says that for all x = (x1, . . . , xp) ∈ Rp,

f(x1, . . . , xp) =

p∏
i=1

f
(
xi|xpa(i)

)
. (1.4)

The following result shows that the latter holds for the distribution of a structural

equation model.

Theorem 1.1. [Pearl, 2009, Theorem 1.4.1] Let P be the law of a structural equation

model with associated directed acyclic graph G, and suppose that P is absolutely

continuous with respect to some measure with density f . Then P satisfies the Markov

factorization property with respect to G.

Proof. Let π be a topological ordering on G and τ = π−1. Then by conditioning on

the variables in the order of the topological ordering, we get

f(x1, . . . , xp) = f(xτ(j+1), . . . , xτ(p) |xτ(1), . . . , xτ(j))
j∏
i=1

f(xτ(i) |xτ(1), . . . , xτ(i−1))
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= . . . =

p∏
i=1

f(xτ(i) |xτ(1), . . . , xτ(i−1)).

Out of variables with indices {τ(1), . . . , τ(i− 1)}, Xτ(i) depends only on those with

indices in pa(τ(i)), which is completely contained within this set by definition of π.

Therefore

f(x1, . . . , xp) =

p∏
i=1

f(xτ(i) |xpa(τ(i))) =

p∏
i=1

f(xi |xpa(i)).

Therefore, under some mild assumptions, we know the directed acyclic graph

associated with a structural equation model encodes positive information about

conditional independence, and thus regular independence (when sets are d-separated

by the empty set). The graph structure can also provide information about total

causal effects, as according to the following proposition.

Proposition 1.2. [Peters, 2015] Let X be generated by a structural equation model

S with associated directed acyclic graph G. Then for j, k ∈ {1, . . . , p} with j 6= k,

if there is not a directed path from j to k in G, then there is no total causal effect

from Xj to Xk.

Proof. Let ε̃j be arbitrary. Suppose the structural equation model S̃ produced after

the intervention do(Xj = ε̃j) on S has associated directed acyclic graph G̃. Then G̃

is simply G with the set of vertices {(i, j) | i ∈ pa(j)} removed. In particular, this

means that j and k are d-separated by the empty set in G̃ if and only if for any

path from j to k, there exists a colliding node. As there is no directed path from j

to k in G, the same holds in G̃, and thus the path in G̃ contains a collider.

Unfortunately, the converse is not true. For example, consider the following

structural equation model:

X1 = X2 −X3 + ε1

X2 = X3 + ε2 (1.5)

X3 = ε3.

Even though 3 → 1, as we can write X1 = ε1 + ε2, it follows that X1 and X3 are

independent under X | do(X3 = ε̃3) for any distribution ε̃3. This is interesting, as

it means that the absence of a directed path means the absence of a causal effect,

whereas the existence of a path says only that there might be an effect.
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1.3 Causal identifiability

The inability to necessarily make positive total causal effect statements between

variables in a structural equation model is an example of (what we call) causal

identifiability issues. To give another example where problems may arise, suppose

P is generated by an (unknown) structural equation model, and we want to estimate

the underlying directed acyclic graph G from the data. However, P can potentially

satisfy the Markov factorization property with respect to a large number of graphs,

and so to perform meaningful inference we need to reduce this number.

We now assume that P is absolutely continuous with respect to some (product)

measure, and refer to the two Markov properties as the same. We say that P satisfies

causal minimality with respect to G if it is Markov with respect to G = (V,E), but

not to any proper subgraph G′ ⊂ G with the same vertex set V . This is reasonable

to assume in practice as it is necessary for model identifiability; without causal

minimality, we could not distinguish between models with Y = 0 · X + ε1 and

Y = ε1, for example. A causally minimal graph may also provide more information

on (the absence of) total causal effects as compared to a supergraph also satisfying

the Markov property.

However, this is not a strong enough assumption for identifiability purposes.

Consider the structure equation models for X and X̃ respectively, where ε ∼ N(0, I3)

and ε̃ ∼ N(0,Λ) where Λ = diag(2, 1/2, 1):

X1 = X2 −X3 + ε1

X2 = X3 + ε2

X3 = ε3

X̃1 = ε̃1

X̃2 = 1
2
X̃1 + X̃3 + ε̃2

X̃3 = ε̃3

Then both X and X̃ are distributed as N(0,Σ) = P , where

Σ =

2 1 0

1 2 1

0 1 1


and P satisfies causal minimality with respect to the associated directed acyclic

graphs of both X and X̃. Despite this, the latter model appears simpler; it does

not have causal effects cancel out as X2 and X3 do in the former. We therefore may

believe that the latter is more plausible or preferable for purposes of interpretation.
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To solve these types of issues, we say that P is faithful with respect to a directed

acyclic graph G if for all A,B, S ⊆ {1, . . . , p} which are pairwise disjoint, A and B

d-separated by S if and only if XA ⊥⊥ XB |XS. Going back to the prior example, P is

faithful with respect to the directed acyclic graph associated with X̃, but not X. In

contrast to causal minimality, this assumption is quite strong and harder to justify

in practice. For linear structural equation models, this is frequently “justified” by

saying that (informally) the “set of unfaithful distributions has Lebesgue measure

zero” [Spirtes et al., 2001, Theorem 3.2]3. Therefore if the law of a linear struc-

tural equation model is absolutely continuous with respect to Lebesgue measure, we

(informally) have “faithfulness with probability one”.

From a methodological viewpoint, we may instead interpret faithfulness as a

version of Occam’s razor, and so either justified or refuted as such. In our scenario,

we want to select the most “simple” graph structure for which the Markov property

holds. We have already argued why assuming causal minimality is a good starting

criterion for “simplicity”; this is also a necessary condition for faithfulness. Indeed,

if we remove an edge j → k, this introduces a new positive conditional independence

statement (that Xj ⊥⊥ Xk |Xpa(k), assuming that π(j) < π(k) for a topological order

π), which cannot happen as by faithfulness we already know them all. As faithful

models are less likely to have the effects of variables cancel each other out (as this is

controlled by d-separation), they are therefore a good candidate for “simple” models.

3This result is sometimes stated in passing without (or at least hiding) the linear requirement,
but we are not able to find such a general result.
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Section 2

An introduction to invariant

prediction

We now discuss the method of invariant prediction presented by Peters, Bühlmann,

and Meinshausen [2016] in detail, the main focus from herein. The method exploits

the idea that if we condition on the variable of interest by all of its “direct causes”,

the resulting distribution will be invariant under different experimental settings

which do not interfere with the variable of interest, and that this is not necessarily

true if we ignore some of the direct causes. By testing for this, we can therefore

attempt to infer some of the true causal variables, along with point estimates and

confidence regions for the “effect size” of each.

Here, we develop a methodology to handle generalized linear models (in some

sense), generalizing those developed in Peters et al. [2016] for linear models. We

begin in Section 2.1 by introducing the invariant prediction assumption, establish-

ing which causal variables we can then identify in Section 2.2. In Section 2.3, we

formulate a hypothesis test which can tell us whether the baseline and direct effect

sizes of our causal variables are invariant under different experimental conditions.

We then use this in Section 2.4 to give a generic testing procedure, guaranteeing

coverage of the “true causal predictors” up to a desired size. Finally in Section 2.5,

we detail how these procedures can be implemented.

2.1 The invariant prediction assumption

Suppose we have different experimental settings denoted by e ∈ E , where for each

environment e we have (Y e, Xe), with Xe ∈ Rp a (row) vector of predictor variables

and Y e ∈ R the response. We use the convention that if S ⊆ {1, . . . , p}, then XS is

the (row) vector with entries Xj for j ∈ S.

13



We then say that the invariant prediction assumption is satisfied if there exists

a subset S∗ ⊆ {1, . . . , p} such that, for all e ∈ E , Xe has an arbitrary distribution,

Y e = h (Xe
S∗ , ε

e) where εe ∼ Fε and εe ⊥⊥ Xe
S∗ , (2.1)

and both h : R|S∗| × R→ R and the error distribution Fε do not depend on the ex-

perimental setting e. This framework is equivalent to the intuition that distributions

conditional on causal effects should be invariant, in the following sense.

Proposition 2.1. [Peters et al., 2016, Section 6.1] For a given subset S ⊆ {1, . . . , p},
the following are equivalent:

(i) There exists a function h : R|S| × R → R and noise distribution for εe such

that the invariant prediction assumption is satisfied.

(ii) For all e, f ∈ E, Y e|Xe
S = x is equal in distribution to Y f |Xf

S = x, for all

x ∈ R|S| such that both conditional distributions are well-defined.

Proof. The forward direction is immediate. For the reverse, let εe ∼ U [0, 1] be in-

dependent of Xe
S, and h(a, b) := F−Y e|Xe

S=a
(b) be the quantile function corresponding

to F , the c.d.f of Y e|Xe
S = a. This has no dependence on e by assumption.

We now specialize to where the conditional distributions belong to an exponential

dispersion family; see Appendix 2 for a review. Fix a particular exponential disper-

sion family Pθ,σ, and write Z ∼ ED(µ, σ) whenever Z ∼ Pθ(µ),σ. We then say that the

invariant prediction assumption (for generalized linear models) is satisfied if there

exists a link function g, a (column) vector of coefficients γ∗ =
(
γ∗1 , . . . , γ

∗
p

)T ∈ Rp

with support S∗ := supp(γ) = {k : γ∗k 6= 0} ⊆ {1, . . . , p} and η∗ ∈ R such that

(i) the Xe have an arbitrary distribution, and

(ii) for all e ∈ E and x ∈ R|S∗| a row vector, Y e|Xe
S∗ = x ∼ ED(µx, σ) whenever

this is well-defined, where g (µx) = η∗ + xγ∗.

Here we use the abuse of notation xγ∗ =
∑

i∈S∗ xiγ
∗
i , as this is not a bona fide

dot product; generally, if we say x ∈ R|S| is a row vector and β ∈ Rp is a column

vector, we will write xβ =
∑

i∈S xiβi, i.e as if x were embedded in Rp with x−S ≡ 0.

Although these are not strictly generalized linear models in the sense of regression,

we will use similar language (e.g canonical link functions) as the ideas are similar.

As a special case, the linear (Gaussian) model as examined by Peters et al. [2016]
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lies within this framework. Indeed, if

Y e = η∗ +Xeγ∗ + εe where εe ∼ N(0, σ2) and εe ⊥⊥ XS∗ , (2.2)

then when using the canonical link for the Normal distribution (g(x) = x) we have

that Y e|Xe
S∗ = x ∼ N(η∗ + xγ∗, σ2). However, as now we can use the tools of

exponential dispersion families and generalized linear models, we could also consider

e.g logistic models where

Y e|XS∗ = x ∼ Bernoulli

(
eη
∗+xγ∗

1 + eη∗+xγ∗

)
. (2.3)

Given this framework, we now want to estimate (η∗, γ∗, S∗) and give confidence

regions for the former two quantities. From herein, we may refer to the two defi-

nitions interchangeably by the invariant prediction assumption; the context will be

sufficient to distinguish between them.

2.2 Plausible and identifiable causal predictors

The first obstacle in trying to estimate (η∗, γ∗, S∗) is that in general, we a priori have

no reason to expect that there is a unique pair (η∗, γ∗, S∗) which allow the invariant

prediction assumption to be satisfied. Therefore we define, for γ ∈ Rp, η ∈ R and

S ⊆ {1, . . . , p}, the null hypothesis

H0,γ,η,S (E) :


there exists σ ∈ (0,∞) and a link function g s.t

for all e ∈ E and x ∈ R|S| when this is well defined,

Y e|Xe
S = x ∼ ED(µx, σ) where g(µx) = η + xγ.

(2.4)

We then call the variables S ⊆ {1, . . . , p} plausible causal predictors under E if the

null hypothesis

H0,S (E) : H0,γ,η,S is true for some γ ∈ Rp and η ∈ R (2.5)

is true. The identifiable causal predictors under E are then defined to be the following

subset of the plausible causal predictors:

S (E) :=
⋂

S:H0,S(E) is true

S. (2.6)
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If the intersection is empty, we let S(E) = ∅. We may think of S(E) as the maximal

subset of {1, . . . , p} which is contained by all the plausible predictors; as we may

not know the “true” predictors, these are the only variables we can hope to identify.

We now make a few remarks about the above definitions. Firstly, if the invariant

prediction assumption is true, then by construction S (E) ⊆ S∗, which will be useful

later in guaranteeing coverage statements. Secondly, if E1 ⊆ E2 and the intersection

over {S |H0,S(E2) is true} is non-empty, then S (E1) ⊆ S (E2). This occurs simply as

if for some S we know H0,S (E2) is true, then so is H0,S (E1). One way of interpreting

this is to say that looking at more interventional environments allows us to gain more

information about which variables are directly causal. However, this says nothing

about whether there exists a finite set of environments E such that S(E) = S∗; see

Section 4.3 for a discussion of this issue when handling structural equation models.

Thirdly, it is important to remember that in H0,S(E) we specify the conditional

distribution of Y e|Xe
S = x, unlike in the general case where the corresponding null

hypothesis is

Hgen
0,S (E) :

 for all e, f ∈ E and x ∈ R|S| such that these are well

defined, Y e|Xe
S = x equals Y f |Xf

S = x in distribution.
(2.7)

In a similar fashion, we may define Sgen(E) as in (2.6). As whenever H0,S(E) is

true, so is Hgen
0,S (E), we therefore have that Sgen(E) ⊆ S(E) if some H0,S is true.

Now suppose we have S∗ as according to the general invariant prediction such that

H0,S∗(E) is false. If Hgen
0,S (E) is false for all S 6= S∗, then S(E) = ∅ ⊆ S∗. However, if

S∗ is not unique in the sense that H0,S(E) (and so Hgen
0,S (E)) is true for some S 6= S∗,

we may have that Sgen(E) ⊆ S∗ ⊆ S(E). Therefore if our distributional assumptions

are false, we cannot always guarantee that S(E) contains only variables in S∗.

Finally, we consider the interpretations of our results if |E| = 1. Working in the

general case, Hgen
0,S (E) is (vacuously) true for any S ⊆ {1, . . . , p} and so Sgen(S) = ∅.

Peters et al. [2016] suggest that this should be interpreted as a conservative principle

which makes no claim as to which variables are causal. However, as Sgen(E) = ∅
can occur when Hgen

0,S (E) is either true or false for all S ⊆ {1, . . . , p}, we should

not try to interpret Sgen(E) in this way and rather consider {S |Hgen
0,S (E) is true}

instead. Similarly, we should only be concerned when {S |H0,S(E) is true} = ∅, as

then the invariant prediction assumption (for generalized linear models) is false for

all S ⊆ {1, . . . , p}, rendering any further analysis moot.
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We now return to considering the η ∈ R and γ ∈ Rp which allow for H0,S(E) to

be true (if indeed it is), which we can interpret as the baseline and direct effect sizes

we want to infer. We define, for S ⊆ {1, . . . , p},

ΓS (E) := {(γ, η) ∈ Rp × R |H0,γ,η,S is true} (2.8)

the set of plausible causal coefficients for S under E , and consequently define the

global set of plausible causal coefficients under E by

Γ (E) :=
⋃

S⊆{1,...,p}

ΓS (E) . (2.9)

Clearly, if H0,S(E) is false, then ΓS(E) = ∅. Similar to the inclusion rule for S (E),

and with the same interpretation, we also know that if E1 ⊆ E2, then Γ (E1) ⊇ Γ (E2).

2.3 Simplifying the null hypothesis H0,S(E)

We now reformulate the null hypothesis H0,S (E) as given in (2.5) to make it more

amenable to testing. We first introduce the shorthand θe(β, ζ) = θ(µe(β, ζ)) =

θ (g−1 (ζ +Xeβ)). Then, for each e ∈ E and S ⊆ {1, . . . , p}, if f(y; θ, σ) is the

density of the fixed exponential dispersion family we are considering (see (A.4)), we

define the population regression coefficients

(
βpred,e (S) , ζpred,e(S)

)
: = argmin

β∈Rp : supp(β)⊆S; ζ∈R
E [− log f (Y e; θe(β, ζ), σe)] (2.10)

= argmin
β∈Rp : supp(β)⊆S; ζ∈R

E [K (θe(β, ζ))− Y eθe(β, ζ)] (2.11)

whenever such a minimizing pair exists. If such a pair is not unique, this is a set

of minimizing pairs, otherwise it is an ordered pair. For example, if we specialise to

Gaussian models, then (2.10) simplifies to give (c.f Peters et al. [2016, Equation 9])

argmin
β∈Rp : supp(β)⊆S; ζ∈R

E
[
(Y e − (ζ +Xeβ))2

]
. (2.12)

If alternatively we are considering a logistic model (with canonical link) for the Y e,

we instead want to find

argmin
β∈Rp : supp(β)⊆S; ζ∈R

E
[
log
(
1 + eζ+X

eβ
)
− Y e(ζ +Xeβ)

]
. (2.13)
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Under the invariant prediction assumption and provided S∗ = S, we know that

(γ∗, η∗) ∈ (βpred,e(S), ζpred,e(S)). Let h(β, ζ) denote the objective function in (2.10),

ν the dominating measure for Y e and P the distribution measure for Xe
S. Suppose

that β ∈ Rp has supp(β) ⊆ S, so θe(β, ζ) has no dependence on Xe
−S. We therefore

define θex(β, ζ) := θ(g−1(ζ+xβ)) for x ∈ R|S|, recalling the notation xβ =
∑

i∈S xiβi.

The subscript x denotes that this is the value of θe(β, ζ) when Xe
S = x. Then

h(β, ζ)− h(γ∗, η∗) = E
[
log

(
f (Y e; θe(β, ζ), σe)

f (Y e; θe(γ∗, η∗), σe)

)]
≥ log

(
E
[
f (Y e; θe(β, ζ), σe)

f (Y e; θe(γ∗, η∗), σe)

])
(by Jensen’s inequality)

= log

(∫
X

∫
Y

f (y; θex(β, ζ), σe)

f (y; θex(γ
∗, η∗), σe)

f (y; θex(γ
∗, η∗), σe) ν(dy)P (dx)

)
= log

(∫
X

∫
Y
f (y; θex(β, ζ), σe) ν(dy)P (dx)

)
= log

(∫
X
P (dx)

)
= log(1) = 0 =⇒ h(β, ζ) ≥ h(γ∗, η∗).

Therefore (γ∗, η∗) is a minimizing pair; if Xe is non-degenerate it is also unique, as

the inequality is strict unless β = γ∗ and ζ = η∗.

From now onwards, we suppose that Xe is non-degenerate; we briefly discuss the

degenerate case in Appendix 5. Provided (2.10) has a unique minimizer, we then

define the population residual dispersion parameters by

σe(S) :=
E
[
(Y e − µpred,e(S))2

]
V (µpred,e(S))

(2.14)

where µpred,e(S) := g−1
(
ζpred,e(S) +Xeβpred,e(S)

)
. This is motivated by recalling

the formula (A.5) for the variance of a random variable belonging to an exponential

dispersion family. If the invariant prediction assumption is true for some S∗ with

dispersion parameter σ∗, we then have that σe(S∗) ≡ σ∗ for all e ∈ E .

By mimicking the above arguments, we can reformulate (2.5) as

H0,S (E) :


there exists (β, ζ) ∈ Rp × R and a link function g s.t for all

e ∈ E and x ∈ R|S|, Y e|Xe
s = x ∼ ED(µx, σ) when this exists

with g(µx) = ζ + xβ, βpred,e(S) ≡ β and ζpred,e(S) ≡ ζ

(2.15)

if the dispersion parameter σ of the family is fixed or known, as for example in
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logistic models where σ ≡ 1, or more generally as

H0,S (E) :


there exists (β, ζ, σ) ∈ Rp × R× R+ and a link function g s.t

for all e ∈ E and x ∈ R|S|, Y e|Xe
s = x ∼ ED(µx, σ) when this exists,

g(µx) = ζ + xβ, and (βpred,e(S), ζpred,e(S), σpred,e(S)) ≡ (β, ζ, σ).

(2.16)

In either case, we can test these directly (see Section 2.5). Furthermore, it implies

that

ΓS (E) =

∅ if H0,S (E) is false(
βpred,e(S), ζpred,e(S)

)
otherwise,

(2.17)

which can then be used to help compute confidence intervals for the linear predictor

coefficients of the causal random variables.

2.4 Estimating the identifiable causal predictors

We would now like to both infer S(E) by observing (Y e, Xe) for different environ-

ments e ∈ E , and also determine confidence intervals for the baseline and direct

effect sizes of these variables. Suppose that, for some desired α, we can test H0,S (E)

to a (conservative) size α for all S ⊆ {1, . . . , p}. A generic method for giving an

estimate Ŝ(E) of S(E) and a confidence set Γ̂(E) of Γ(E) is then as follows:

(i) For each S ⊆ {1, . . . , p}, we test whether H0,S (E) holds to a level α.

(ii) We then estimate (the indices of) the identifiable causal random variables by

Ŝ (E) :=
⋂

S⊆{1,...,p} :H0,S(E) not rejected

S (2.18)

(iii) A confidence set for (γ∗, η∗) is then obtained by forming

Γ̂ (E) :=
⋃

S⊆{1,...,p}

Γ̂S (E) , (2.19)

where

Γ̂S (E) :=

∅ if H0,S (E) is rejected at a level α

Ĉ(S) otherwise,
(2.20)

given some level (1− α)-confidence set Ĉ(S) for
(
βpred(S), ζpred,e(S)

)
.
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We now state and prove a result guaranteeing coverage of the true causal predictors

S∗ and coefficients (γ∗, η∗) when using the above method.

Theorem 2.2. [Peters et al., 2016, Theorem 1] Suppose we have a valid test for

H0,S (E) at level α for all sets S ⊆ {1, . . . , p}, in the sense that for all S ⊆ {1, . . . , p},

sup
P :H0,S(E) is true

P (H0,S (E) is rejected) ≤ α.

Further suppose that Ŝ(E) and Γ̂ (E) are constructed according to (2.18) and (2.19)

respectively. Let P be a distribution over (Y,X) and consider any (γ∗, η∗, S∗) such

that the invariant prediction assumption holds. Then Ŝ(E) satisfies

P
(
Ŝ(E) ⊆ S∗

)
≥ 1− α.

Moreover, if P
(

(γ, η) ∈ Ĉ(S)
)
≥ 1 − α for all (γ, η, S) such that the invariant

prediction assumption is satisfied, then

P
(

(γ∗, η∗) ∈ Γ̂(E)
)
≥ 1− 2α.

Proof. As when H0,S∗ (E) is not rejected, we know that Ŝ (E) ⊆ S∗. Therefore the

first coverage statement follows as

P
(
Ŝ(E) ⊆ S∗

)
≥ P (H0,S∗ (E) is rejected) ≥ 1− α.

The second coverage statement is then a consequence of Boole’s inequality:

P
(

(γ∗, η∗) /∈ Γ̂(E)
)
≤ P

(
H0,S∗ (E) is rejected, or (γ∗, η∗) /∈ Ĉ(S∗)

)
≤ α + α = 2α.

Note that the extra loss of α for probability of coverage by the confidence set is

necessary; it may be the case that H0,S∗(E) is not rejected, yet (γ∗, η∗) /∈ Ĉ(S∗).

2.5 Constructing conservative tests for H0,S (E)

Given the generic testing method developed in Section 2.4, all that remains is to

construct hypothesis tests to be used in practice. We now assume that
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• the data consists of n independent observations (yi, xi) where yi ∈ R and

xi ∈ Rp is a row vector,

• for each e ∈ E , we make ne (where ne > p+1) i.i.d observations from (Y e, Xe),

so in particular
∑

e∈E ne = n, and

• the ne× (p+1) design matrix Xe of the ne observations from the experimental

setting e ∈ E , with rows (1, xi), has full rank p.

The tests we propose to handle generalized linear models will not have exact (con-

servative) size α, but will do so asymptotically as the sample size goes to infinity,

and so the statements of Theorem 2.2 will also hold “asymptotically”.

More formally, suppose that we perform experiments e in a finite number of envi-

ronments E , with each experiment corresponding to a probability space (Ωe,Fe,Pe).
For our asymptotic analyses, we then work on a probability space (Ω,F ,P) corre-

sponding to an infinite number of observations from each environment, where

Ω :=
∏
e∈E

ΩN
e , F :=

⊗
e∈E

FN
e , P :=

⊗
e∈E

PN
e ; (2.21)

in other words, we take the product measure over e ∈ E of (ΩN
e ,FN

e ,PN
e ), the canon-

ical model for i.i.d random variables drawn from the environment e. Theorem 2.2

then holds by replacing the appropriate distributions with the above measures, and

saying that the coverage statements hold in the limit as the ne →∞ for all e ∈ E .

2.5.1 Testing H0,S (E) in linear Gaussian models

We now detail the testing procedure for the Gaussian case (2.2) suggested by Peters

et al. [2016], although we propose an elliptical confidence region which handles the

intercept term. Here the coverage statements guaranteed by Theorem 2.2 will be

exact, unlike for the testing procedure in Section 2.5.2 which could also be applied

in this scenario. We begin with some notation. Fixing S ⊆ {1, . . . , p} and e ∈ E ,

we let:

• Ie ⊆ {1, . . . , n} be the labels of the ne observations corresponding to the

environment e ∈ E , and I−e := {1, . . . , n} \ Ie for the remaining n−e := n−ne;

• Xe,S be the ne × (1 + |S|) design matrix with rows (1, (xi)S) for i ∈ Ie, corre-

sponding to samples in Ie and random variables in S, and similarly X−e,S for

the samples in I−e;
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• β̂pred(S) and ζ̂pred(S) be the MLE’s of β and ζ under the null hypothesis

H0,S(E) (note the lack of e in the superscript); and finally

• Ŷe be the prediction vector for the observations Ye = (yi : i ∈ Ie) using the

MLE estimator computed on samples in I−e, and D = Ye − Ŷ e be the vector

of differences between the observed and predicted values.

The method then works as follows:

Step 1: Fix S ⊆ {1, . . . , p}. Then we reject H0,S(E) if, for any e ∈ E ,

DTΣ−1D D

σ̃2ne
> Fne,n−e−|S|−1

(
α

|E|

)
, (2.22)

where σ̃2 is the (unbiased) estimate of the variance using samples in I−e, the covari-

ance matrix ΣD and its inverse (after using the Woodbury matrix identity; see e.g

Hager [1989]) are given by

ΣD = 1ne + Xe,S

(
XT
−e,SX−e,S

)−1
XT
e,S,

Σ−1D = 1ne −Xe,S

(
XT
−e,SX−e,S + XT

e,SXe,S

)−1
XT
e,S,

and Fr,s(α̃) is the 100(1− α̃)% quantile of the Fr,s distribution.

This corresponds to performing the Chow test [Chow, 1960] |E| times and then

using the Bonferroni correction to account for the multiple tests. From a compu-

tational perspective, using Σ−1D directly means that only one matrix inversion is

required rather than two, which is desirable both in terms of speed and stability.

Alternatively, as Σ−1D D is the solution to ΣDx = D for x ∈ Rne , we can use LU

decomposition (for example) to solve this without inversion.

Step 2: Repeat Step 1 for all S ⊆ {1, . . . , p}, starting with S = ∅. If we

(i) do not reject H0,∅(E), or

(ii) do not reject H0,S1(E) and H0,S2(E) for some S1, S2 such that S1 ∩ S2 = ∅,

then we stop and set Ŝ(E) = ∅. Otherwise we set Ŝ(E) as in (2.18).

Step 3: If we reject H0,S(E) set Γ̂S(E) = ∅. Otherwise, it contains (β, ζ) ∈ Rp × R
if and only if supp(β) ⊆ S and∥∥∥∥∥XS

(
ζ − ζ̂pred(S)

β − β̂pred(S)

)∥∥∥∥∥
2

2

≤ (|S|+ 1)σ̃2F|S|+1,n−|S|−1(α), (2.23)
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where XS is the n× (1 + |S|) design matrix for all the observations for variables in

S and σ̃2 is the (unbiased) estimator of the variance using all the samples. We then

form Γ̂(E) as in (2.19).

To justify the data pooling used here to give the confidence region, recall that

under the invariant prediction assumption, Y e|Xe
S∗ = x does not depend on e ∈ E

(Theorem 2.1). Therefore, even though the (Y e, Xe
S∗) may vary in distribution

across different e ∈ E , as the confidence region depends only on the behaviour of

the regression function, the results obtained by pooling are valid.

2.5.2 Testing H0,S (E) for generalized linear models

We now give a method for testing the null hypothesis H0,S(E) when the conditional

distributions Y e|Xe = x behave as any generalized linear model, rather than just a

Gaussian one. We implicitly assume any regularity conditions necessary to obtain

the desired asymptotic coverage (see e.g. Jørgensen [1987]). Fixing S ⊆ {1, . . . , p}
and e ∈ E , we require some more notation to that from Section 2.5.1; we let

• β̂pred,e(S) and ζ̂pred,e(S) be the MLE’s for βpred,e(S) and ζpred,e(S) under the

individual model for an environment e ∈ E ;

• D := D(y; β̂pred(S), ζ̂pred(S)) be the deviance under the null hypothesis for all

n observations y; and finally

• De := De(ye; β̂pred,e(S), ζ̂pred,e(S)) be the deviance for the model corresponding

to the environment e ∈ E with observations Ye only.

The testing procedure then works as follows:

Step 1: Fix S ⊆ {1, . . . , p}. If the dispersion parameter σ is known, we reject

H0,S(E) if the test statistic

D −
∑

e∈E D
e

σ
> χ2

(|S|+1)(|E|−1)(α), (2.24)

where χ2
ν(α) is the upper α-quantile of a χ2

ν distribution [Liao, 2002]. If it is un-

known, then we instead reject H0,S(E) if

1
(|S|+1)(|E|−1)

(
D −

∑
e∈E D

e
)

σ̂(S)
> F(|S|+1)(|E|−1), n−|E|(|S|+1)(α) (2.25)
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where

σ̂(S) :=
1

n− |E|(|S|+ 1)

n∑
i=1

(yi − µ̂i)2

V (µ̂i)
, given

µ̂i := g−1
(
ζ̂pred,e(S) + xiβ̂

pred,e(S)
)

for i ∈ Ie,

is a consistent estimator of σ.

To explain where these tests arise from, note that under either (2.15) or (2.16),

we can embed our models in a framework where our distributions belong to the

a exponential dispersion family with the dispersion parameter fixed. Supposing

E = {e1, . . . , em}, the corresponding design matrix is diag (Xe1,S, . . . ,Xem,S), and we

seek to estimate
(
ζpred,e1(S), βpred,e1(S)T , . . . , ζpred,em(S), βpred,em(S)T

)T
. The test

then corresponds to performing the (generalized) likelihood ratio test of

H0 :
(
βpred,e(S), ζpred,e(S)

)
is constant across e ∈ E , against

H1 :
(
βpred,e(S), ζpred,e(S)

)
6=
(
βpred,f (S), ζpred,f (S)

)
for some e, f ∈ E .

In a similar vein to how the Chow test was used in Section 2.5.1, we could instead

test for whether the regression coefficients are different across e ∈ E and E \ {e} for

each e. Let D−e be the deviance for the model as under H0,S(E\{e}), and β̂pred,−e(S)

and ζ̂pred,−e(S) be the respective MLE’s of βpred,−e(S) and ζpred,−e(S). Then provided

the dispersion parameter is known, we reject H0,S(E) if for any e ∈ E ,

D − (De +D−e)

σ
> χ2

|S|+1

(
α

|E|

)
. (2.26)

Otherwise, we reject H0,S(E) if, for any e ∈ E ,

1
|S|+1

(D − (De +D−e))

σ̂(S)
> F|S|+1, n−2(|S|+1)

(
α

|E|

)
, (2.27)

where

σ̂(S) :=
1

n− 2(|S|+ 1)

n∑
i=1

(yi − µ̂i)2

V (µ̂i)
, given

µ̂i := g−1
(
ζ̂pred,e(S) + xiβ̂

pred,e(S)
)

if i ∈ Ie, otherwise

:= g−1
(
ζ̂pred,−e(S) + xiβ̂

pred,−e(S)
)
.
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Although both tests proposed for H0,S(E) will have the same asymptotic size,

for finite samples we would expect that they are powered to handle different types

of changes across experimental settings. As the first contains the sum of the de-

viances across all e ∈ E , we would expect it to perform best when there are small

changes in the regression coefficients across multiple environments. Conversely, we

would expect the second to perform better when there is a big change in one envi-

ronment. The finite sample performance using both tests for H0,S(E) is investigated

in Section 5.

Step 2: As in Section 2.5.1, we repeat Step 1 for all S ⊆ {1, . . . , p}, starting with

S = ∅. Again, if we

(i) do not reject H0,∅(E), or

(ii) do not reject H0,S1(E) and H0,S2(E) for some S1, S2 such that S1 ∩ S2 = ∅,

then we stop and set Ŝ(E) = ∅. Otherwise we set Ŝ(E) as in (2.18).

Step 3: If we reject H0,S(E), set Γ̂S(E) = ∅. Otherwise, it contains (β, ζ) ∈ Rp × R
if and only if supp(β) ⊆ S and∥∥∥∥∥W1/2XS

(
ζ − ζ̂pred(S)

β − β̂pred(S)

)∥∥∥∥∥
2

2

≤ σ̂(S)χ2
|S|+1(α) (2.28)

(c.f (2.23)), where W is a n× n diagonal matrix with entries

Wii =
1

V (µ̂i)(g′(µ̂i))2
. (2.29)

The pooling can be justified with the same argument as before; similarly, we then

form Γ̂(E) as in (2.19).
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Section 3

Invariant prediction for large p

In Section 2.4, we specified a method which requires testing H0,S(E) over all subsets

S of {1, . . . , p}. Unfortunately, this is computationally infeasible for large p. As

seen in Section 2.5, a few early stopping criteria can be used in practice to possibly

save time in the case Ŝ(E) = ∅. However, if we ever hope to a detect a non-empty

set of identifiable causal predictors, we must test all S ⊆ {1, . . . , p} as we a-priori

do not know the true causal predictors.

We therefore discuss ways of performing invariant prediction when p is large,

even when p� n. One way of handling this is to suppose that the number of causal

variables q is actually far smaller than p, say for reasons of interpretation. We can

then restrict S(E) and Ŝ(E) to intersections over S ⊆ {1, . . . , p} of size |S| ≤ q.

This means that we need only test at most
(
p
q

)
= O(pq) subsets of {1, . . . , p} rather

than 2p, and so the procedure gains a large computational speed-up. However, even

for moderately size q, this may still be too large a number of subsets to test on.

To try and gain a further increase in speed, we can do so at some cost to the

coverage probability of our estimator Ŝ(E). Suppose we can find B ⊆ {1, . . . , p}
such that both |B| ≤ q and P(S∗ ⊆ B) ≥ 1 − α. Then by searching over subsets

of B, Ŝ(E) ⊆ S∗ holds with probability at least 1− 2α (or asymptotically so), in a

manner analogous to Theorem 2.2.

To achieve this, we begin in Section 3.1 by proving a result which links the

support set of an estimator β̂ for γ∗ to its `1 error. In Section 3.2, we then propose a

modified version of the Lasso [Tibshirani, 1994] to use, whose `1 error we investigate

in Section 3.3. We end in Section 3.4 by showing that, under several conditions, we

can guarantee S∗ ⊆ B with high probability. As one example, suppose mine∈E ne �
log p, our variables belong to a structural equation model with a sparse graph and

|S∗| = O(log(p)). Then provided B is of a similar order of magnitude, we only need

to test O(p) subsets of {1, . . . , p}, and yet have Ŝ(E) ⊆ S∗ with high probability.
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3.1 Linking coverage of S∗ to `1 prediction error

We now discuss how to ensure that S∗ ⊆ B with high probability. To begin, suppose

that the invariant prediction assumption holds, and that B arises as the support set

of some estimator β̂ for γ∗. The following lemma (a minor refinement of Lemma 3

from Bunea [2008]) links the coverage of S∗ by B to the `1 norm of the difference

between β̂ and γ∗ when restricted to entries in S∗.

Lemma 3.1. In the scenario described above, we have that

P (S∗ 6⊆ B) ≤ P
(
‖β̂ − γ∗‖1,S∗ ≥ min

i∈S∗
|γ∗i |
)
,

where we define for ∅ 6= S ⊆ {1, . . . , p} the semi-norm ‖x‖1,S :=
∑

i∈S |xi|.

Proof. This inequality is simply a consequence of how B and S∗ are support sets

for β̂ and γ∗ respectively. Indeed,

P (S∗ 6⊆ B) ≤ P (j /∈ B for some j ∈ S∗)

≤ P
(
β̂j = 0 and γ∗j 6= 0 for some j ∈ S∗

)
≤ P

(
|β̂j − γ∗j | = |γ∗j | for some j ∈ S∗

)
≤ P

(
‖β̂ − γ∗‖1,S∗ ≥ min

i∈S∗
|γ∗i |
)
, (†)

where (†) follows as ‖β̂ − γ∗‖1,S∗ ≥ |β̂j − γ∗j | for j ∈ S∗ and |γ∗j | ≥ mini∈S∗|γ∗i |.

As a result, if we assume that mini∈S∗ |γ∗i | > δ for some δ not depending on the

data (referred to as a beta-min condition in the literature), and we can guarantee

that ‖β̂ − γ∗‖1,S∗ ≤ δ with probability 1− α, then P(S∗ ⊆ B) ≥ 1− α as desired.

One basic way to use this is to look at the (Y e, Xe) separately for e ∈ E , each

giving an estimator β̂e and corresponding support set Be ⊆ {1, . . . , p}. The set

∩e∈EBe will then contain S∗ with high probability. More precisely, suppose for each

e ∈ E that, for all α ∈ (0, 1), there exists δ(e, α) such that,

min
i∈S∗
|γ∗i | > δ(e, α) and P

(
‖β̂e − γ∗‖1,S∗ ≥ δ(e, α)

)
≤ α (3.1)
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so by Lemma 3.1, P(S∗ ⊆ Be) ≥ 1− α. Fixing α, if we then also have that

min
i∈S∗
|γ∗i | > max

e∈E
δ
(
e, α|E|

)
and P

(
‖β̂e − γ∗‖1,S∗ ≥ δ

(
e, α|E|

))
≤ α

|E|
for all e ∈ E ,

(3.2)

we may deduce that P(S∗ ⊆ ∩e∈EBe) ≥ 1 − α. However, if (2.1) is true, we would

expect that the Be are similar across e ∈ E , and so ∩e∈EBe should not be much

smaller than any of the Be. Moreover, as this method does not directly try and take

into account that the β̂e should be identical across different e ∈ E , we might expect

it to be sub-optimal in some regards.

3.2 A generalization of the Lasso

We therefore focus on handling a estimator for γ∗ which attempts to use all the

information across different e ∈ E . Here we specialize to the linear Gaussian model

as in (2.2): we assume there exists η∗ ∈ R and γ∗ ∈ Rp with S∗ := supp(γ∗) such

that

Y e = η∗ +Xeγ∗ + εe where εe ⊥⊥ Xe
S∗ and εe ∼ N(0, σ2) (3.3)

for all e ∈ E . Note that is not necessarily true that εe ⊥⊥ Xe, only that εe ⊥⊥ Xe
S∗ .

We take independent samples (yi, xi) for i = 1, . . . , n, where Ie ⊆ {1, . . . , n} is the

index set of samples taken from (Y e, Xe). We then denote Ye = (yi)i∈Ie and Xe

for the design matrix (without intercept) whose rows consist of the xi for i ∈ Ie.

Without loss of generality, we may remove the intercept from (3.3) so that

Y e = Xeγ∗ + εe where E[Y e] = E[Xe] = 0, (3.4)

and that Ye and the columns of Xe are all mean-centred. This means that our

samples are such that

Ye = Xeγ
∗ + εe − ε̄e1ne for all e ∈ E , (3.5)

where εe = (εi)i∈Ie , εi
i.i.d∼ N(0, σ2) for some σ2 > 0 and ε̄e =

∑
i∈Ie εi/ne.

Given this framework, we then define for λ ≥ 0 the invariant Lasso by

β̂λ ∈ argmin
β∈Rp

{∑
e∈E

1

2ne
||Ye −Xeβ||22 + λ ‖β‖1

}
. (3.6)
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We use ∈ as a solution may not exist uniquely, although one does exist (see Ap-

pendix 3). The non-uniqueness means that we must be careful when considering

statements such as S∗ ⊆ B, as the support set of invariant Lasso solutions may not

be unique. Note that if |E| = 1, (3.6) corresponds to an ordinary Lasso estimator

for γ∗. Generally, (3.6) may be thought as a re-weighted version of the ordinary

Lasso, which avoids biasing against environmental settings e ∈ E with samples sizes

ne which are small when compared to other settings.

Suppose we were to pool variables in F ⊆ E together to form a single envi-

ronment, which we also denote as F . The ordinary Lasso then corresponds to the

case when F = E . Now, note that in practice we do not sample from (Y F , XF)

and actually sample from the (Y e, Xe) individually. Denoting nF =
∑

e∈F ne and

IF = ∪e∈FIe, we know that

1

nF

∑
i∈IF

(yi − xiβ)2 =
∑
e∈F

ne
nF

(
1

ne

∑
i∈Ie

(yi − xiβ)2

)
. (3.7)

Therefore, if we pool together settings with unequal samples size, in (3.6) we are

penalizing weighted sums of the mean squared error of yi. This means that envi-

ronments with smaller numbers of samples contribute less to the objective function,

even if from an information-theoretic perspective they could tell us more about γ∗

than other environments with the same sample size.

Returning to properties of the invariant Lasso, as the optimization problem in

(3.6) is convex, we know that β is a solution if and only if the KKT conditions

∑
e∈E

1

ne
XT
e (Ye −Xeβ) = λν for some ν such that ‖ν‖∞ ≤ 1 (3.8)

and, if A = supp(β), then νA = sgn(βA),

are satisfied (see e.g Boyd and Vandenberghe [2004]). Furthermore, the fitted values

Xeβ̂λ are unique for all e ∈ E given any invariant Lasso solution. The value of

||β̂λ||1 is also unique; see Appendix 3 for further details on these two points. As a

consequence, the following analogue of the equicorrelation set

Êλ :=

{
k ∈ {1, . . . , p} :

∣∣∣∣∣∑
e∈E

1

ne
XT
e (Ye −Xeβ̂λ)

∣∣∣∣∣
k

= λ

}
(3.9)

is well defined for all invariant Lasso solutions β̂λ.
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By the KKT conditions (3.8), this contains the set of non-zero indices for every

invariant Lasso solution; however, it is not necessarily equal to the support set of

every solution, which may vary. On a similar note, as we analyse the coverage

probability of S∗ ⊆ B by examining the `1-norm of β̂λ−γ∗ on S∗, we need to ensure

that such a bound holds independently of the solution.

3.3 A compatibility condition

To get such a bound, we require some conditions on the design matrices Xe. We say

the compatibility condition1 is satisfied if there exists a constant φ > 0 such that

P

(∑
e∈E

1

ne
‖Xeβ‖22 ≥

φ2

|S∗|
‖β‖21,S∗

)
= 1 (3.10)

for all β ∈ Rp such that βS∗ 6= 0 and ‖β‖1,−S∗ ≤ 3 ‖β‖1,S∗ , where we denote

−S∗ := {1, . . . , p} \ S∗. Intuitively, this says that provided “enough of the mass”

of ‖β‖1 lies within S∗, then
∑

e∈E
1
ne
‖Xeβ‖22 � ‖β‖22 almost surely. We now prove a

result similar to e.g Theorem 2.2 of Bunea [2008], or Theorem 6.4 of Bühlmann and

van de Geer [2011], which gives an upper bound on ‖β̂λ − γ∗‖1,S∗ which holds with

high probability provided the Xe are bounded2 and (3.10) holds.

Theorem 3.2. Suppose we have a series of linear Gaussian models as in (3.4), with

independent observations (yi, xi) as in (3.5). Further suppose that the compatibility

condition (3.10) holds with constant φ > 0, and that there exists M > 0 such that

|Xe
i | ≤ M almost surely for all e ∈ E and i = 1, . . . , p. Fix λ > 0. Then for all

invariant Lasso solutions β̂λ to (3.6),

‖γ∗ − β̂λ‖1,S∗ ≤
3λ|S∗|

2φ2

occurs with probability at least

1− exp

(
− λ2nmin

8|E|M2σ2

)[
|S∗|+ 2(p− |S∗|)

{
1 + exp

(
−λ2n2

min

8|E|2M2σ2n2
max

)}n]
where nmin := mine∈E ne, nmax := maxe∈E ne and n =

∑
e∈E ne.

1This is a generalization of an “almost sure” version of the compatibility condition for the
ordinary Lasso when the design matrices Xe are fixed.

2This assumption is common for theoretical results about the (ordinary) Lasso when the design
matrix is not fixed; see e.g Bunea [2008] or Chatterjee [2013].
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Proof. Fix a solution β̂λ of (3.6). We begin by deriving the following analogue of

the “basic inequality” for the ordinary Lasso:

∑
e∈E

1

ne
‖Xe(γ

∗ − β̂λ)‖22 ≤
∑
e∈E

1

ne
(εe)TXe(β̂λ − γ∗) + λ ‖γ∗‖1 − λ‖β̂λ‖1. (†)

Note that the uniqueness of fitted values across e ∈ E implies that this holds for

all invariant Lasso solutions. Now, by multiplying both sides of the KKT condition

(3.8) by (γ∗ − β̂λ)T , we find that

∑
e∈E

1

ne
(Xe(γ

∗ − β̂λ))T (Ye −Xeβ̂λ) = λν(γ∗ − β̂λ)T

where ν has ‖ν‖∞ ≤ 1 and, writing A := supp(β̂λ), νA = sgn(β̂λ,A). Then by using

(i) Y e −Xeβ̂λ = Xe(γ
∗ − β̂λ) + εe − ε̄e1ne ,

(ii) (ε̄e1ne)
T Xe = 0 as Xe has mean centred columns,

(iii) νβ̂Tλ = ‖β̂λ‖1 by definition of ν,

(iv) |ν(γ∗)T | ≤ ‖ν‖∞ ‖γ∗‖1 = ‖γ∗‖1 by Hölder’s inequality

and rearranging, we obtain (†).

We now work on the event Ω where
∥∥∑

e∈E XT
e εe/ne

∥∥
∞ ≤ λ/2. By Holder’s

inequality, we obtain that∣∣∣∣∣∑
e∈E

1

ne
(εe)

TXe(β̂λ − γ∗)

∣∣∣∣∣ ≤ λ

2
‖β̂λ − γ∗‖1

and therefore by (†) that

C :=
∑
e∈E

1

λne
‖Xe(γ

∗ − β̂λ)‖22 ≤
1

2
‖β̂λ − γ∗‖1 + ‖γ∗‖1 − ‖β̂λ‖1.

Using that ‖v‖1 = ‖v‖1,A + ‖v‖1,−A for A ⊆ {1, . . . , p} and γ∗−S∗ = 0, it follows that

C +
1

2
‖β̂λ − γ∗‖1,−S∗ ≤

3

2
‖β̂λ − γ∗‖1,S∗ .

Finally, we obtain on Ω intersected by an event of probability one that

‖γ∗ − β̂λ‖1,S∗ ≤
3λ|S∗|

2φ2
.
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by using the compatibility condition (3.10), multiplying both sides by λ and rear-

ranging. To find a lower bound on P(Ω), we note that

P(Ωc) = P
(
|Zj| >

λ

2
for some j ∈ {1, . . . , p}

)
≤

p∑
j=1

P
(
|Zj| >

λ

2

)

by Boole’s inequality, where we define

Zj :=

(∑
e∈E

1

ne
XT
e ε

e

)
j

=
∑
e∈E

1

ne

∑
i∈Ie

xijεi.

The result then follows by using Lemma 3.3 below.

Lemma 3.3. Under the conditions stated in Theorem 3.2, we have that

P (|Zj| > t) ≤ exp

(
− t2nmin

2|E|M2σ2

)
if j ∈ S∗ or Xe

j ⊥⊥ ε for all e ∈ E; otherwise

P (|Zj| > t) ≤ 2 exp

(
−t2nmin

2|E|M2σ2

){
1 + exp

(
−t2n2

min

2|E|2M2σ2n2
max

)}n
.

Proof. See Appendix 4.

As we can obtain tighter bounds on P(|Zj| > t) whenever Xe
j ⊥⊥ ε for all e ∈ E ,

if we let I be the set of indices for which this occurs (so S∗ ⊆ I), the lower bound

in 3.2 can be improved to

1− exp

(
− λ2nmin

8|E|M2σ2

)[
|I|+ 2(p− |I|)

{
1 + exp

(
−λ2n2

min

8|E|2M2σ2n2
max

)}n]
. (3.11)

If we can guarantee that |I| is large, then the 2(n−|I|){· · · }n term above is mostly

negligible, ensuring that S∗ ⊆ B̂λ occurs with far higher probability (for the same

λ) than if |I| were small. One example where this can occur is when Y and the

Xi form a structural equation model. By iterating the governing equations of the

model, Xj can be written as a function of only the noise terms εi for i ∈ an(j).

Moreover, this property is preserved by interventions which e.g do not change the

structure of the underlying directed acyclic graph. Therefore, if Y does not belong

to a large number of ancestor sets, either because of e.g sparsity or as Y appears

late in some topological ordering, we can expect |I| to be large.
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3.4 Guaranteeing S∗ ⊆ B̂λ with high probability

Using the above results so far, we obtain the following:

Corollary 3.4. Suppose we have a series of linear Gaussian models as in (3.4)

and independent observations (yi, xi) as in (3.5). Fix 0 < α < 1 and let nmin :=

mine∈E ne, nmax := maxe∈E ne. Further suppose that (i) the compatibility condition

(3.10) is true with constant φ > 0, (ii) we choose λ greater than

2Mσ min
1≤C≤2n

(
|E|nmax

nmin

√
−2 log(C1/n − 1)

)
∨

√
|E|
nmin

2 log

(
|I|+ 2C(p− |I|)

α

)
and (iii) the “beta-min” condition

min
i∈S∗
|γ∗i | >

3λ|S∗|
2φ2

holds. Then if Bλ is the support set of any invariant Lasso solution β̂λ to (3.6), we

have S∗ ⊆ Bλ with probability at least 1− α.

Proof. Condition (i) allows us to use Theorem 3.2, so we know that S∗ 6⊆ Bλ occurs

with probability no more than

exp

(
− λ2nmin

8|E|M2σ2

)[
|I|+ 2(p− |I|)

{
1 + exp

(
−λ2n2

min

8|E|2M2σ2n2
max

)}n]
.

We now want λ such that this quantity is less than α. We begin by controlling the

{· · · }n term. Let 1 ≤ C ≤ 2n be a constant such that{
1 + exp

(
−λ2n2

min

8|E|2M2σ2n2
max

)}n
≤ C ⇐⇒ λ ≥ 2Mσ

|E|nmax

nmin

√
−2 log(C1/n − 1)

Given this, we can then choose λ which satisfies the above and

exp

(
− λ2nmin

8|E|M2σ2

)
[|I|+ 2C(p− |I|)] ≤ α

⇐⇒ λ ≥ 2Mσ

√
|E|
nmin

2 log

(
|I|+ 2C(p− |I|)

α

)
.

To get the exact statement of condition (ii), we optimise these bounds over C. Using

condition (iii) with Lemma 3.1 then gives the desired conclusion.
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Rather than detail an optimal choice of C in full generality, we end by briefly

describing the behaviour when |I| = ηp for some η close to one. Suppose that

p� 2n, and η is such that 1−η = p2−(n+1). In this case, we choose C = 2n to give a

lower bound for λ in Corollary 3.4. As a consequence, if we write mini∈S∗ |γ∗i | = D,

then provided we have bounds

2σM

√
2|E|(2 log p− logα)

nmin

. λ ≤ 2Dφ2

3|S∗|
, (3.12)

the support set of any invariant Lasso solution will contain S∗ with probability

of (approximately) 1 − α. As the logα term is negligible for sufficiently large p,

rearranging this inequality gives

|S∗| . Dφ2

3σM

√
nmin

4|E| log p
. (3.13)

In particular, this tells us that Corollary 3.4 likely can be applied in the regime where

nmin � log p, noting that this condition is mostly consistent with the requirement

that p� 2n.

An interesting feature of the requirements on λ in this case is that they feature

only nmin, and not also the ratio nmax/nmin as in the general case. This is a conse-

quence of the number of j where Xe
j 6⊥⊥ ε for some e ∈ E is very small. Therefore,

even if we sample largely from the e ∈ E where this occurs often, there is little

impact on the overall behaviour of the estimator. However, if I is not large, we

need the ratio nmax/nmin to be small, as otherwise it may be possible to take a large

number of samples from e ∈ E where Xe
j 6⊥⊥ ε for a large number of j. In this case,

the estimate B̂λ is unlikely to contain S∗.
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Section 4

Links with structural equation

modelling

Having previously discussed both structural equation modelling (Section 1) and

invariant prediction (Sections 2 and 3), we now discuss some links and differences

between the two. In Section 4.1 we discuss how, given a variable Y in a structural

equation model, its set of parents pa(Y ) satisfies the invariant prediction assumption

whenever E consists of interventions not acting on the variable of interest. We then

discuss what other subsets of variables satisfy this property in Section 4.2.

As we will find that, provided the structural equation model satisfies causal

minimality, pa(Y ) is the unique minimal set which satisfies this property, we then

seek to answer when we can ensure that S(E) = pa(Y ). In Section 4.3, we show

that for a certain types of structural equation model, this can be achieved whenever

E contains certain types of interventions which act on a specific single (but a-priori

unknown) variable within the model. We then end in Section 4.4 by briefly discussing

a few differences between the two frameworks.

4.1 Invariant prediction and autonomy

Recall that one of the important features of a structural equation model is that

it informs us what happens when we intervene on variables within it. From an

inference perspective, this is important as causal relationships are invariant under

different interventional settings - a property sometimes referred to as autonomy.

To be precise, let f and f̃ be densities for X ∈ Rp under the law of a structural

equation model prior and post intervention respectively. Then one can show that

f(xk|xpa(k)) = f̃(xk|xpa(k)) (4.1)
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provided that the intervention does not involve Xk. We now illustrate a similar

principle which shows that, under the same conditions, the invariant prediction

assumption is satisfied when S∗ is the set of parents of Y .

Theorem 4.1. Suppose (X0 = Y,X1, . . . , Xp) ∈ Rp+1 is generated by a structural

equation model, so that

Xi = fi(Xpa(i), εi) for i = 0, . . . , p,

for some functions fi and noise distributions εi (which are jointly independent).

Suppose E is a (non-empty) set of interventional settings, as defined in (1.2), where

we denote variables under the interventional setting e ∈ E by a superscript e. Further

suppose that all interventions act only on variables in {X1, . . . , Xp} and never on

Y . Then the invariant prediction assumption (2.1) is true with S∗ = pa(0), Fε
d
= ε0

and h = f0.

Proof. As interventions are never performed on Y , the structural equation model

tells us that Y e = f0(X
e
pa(0), ε

e
0) for all e ∈ E . By definition of an intervention, we

know that for all e, f ∈ E that (i) εe0
d
= εf0 and (ii) εe0 ⊥⊥ {εei | i ∈ an(0)}. By (ii) we

may deduce that εe0 ⊥⊥ Xe
pa(0). This follows by recursively building

εe0 ⊥⊥ {Xi | i ∈ an(0), π(i) ≤ j},

where π is a topological ordering on the corresponding directed acyclic graph of

the structural equation model, until j = max{π(i) | i ∈ pa(0)}. Then as (i) guar-

antees that εe0 has the same distribution across all e ∈ E , the invariant prediction

assumption is satisfied under the desired conditions.

One scenario where this is useful is when Y |Xpa(Y ) = x ∼ ED(µx, σ), where

g(µx) = η∗ + xγ∗ and η∗, γ∗ are known, as then the methodology developed in

Section 2 can be used as a way of falsifying the structural equation model. Firstly,

this implies that H0,pa(Y )(E) is true, which we can test using the methods developed

in Section 2.5. Secondly, as this only tests whether there exist η∗, γ∗ such that

the above relationship holds, we can check whether the confidence region produced

actually contains the “true” values (η∗, γ∗) as according to the structural equation

model. More generally, as the only requirement on E is that it contains interventions,

invariant prediction may be used naturally alongside structural equation modelling.
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4.2 The global invariant prediction assumption

Although Proposition 4.1 guarantees that the invariant prediction assumption holds

for S∗ = pa(Y ) under mild conditions on the interventions performed, the question

arises of whether this is the unique such subset of {1, . . . , p}. In other words, is the

invariant prediction assumption also true for another S∗ 6= pa(0), given any E which

satisfies the conditions of Proposition 4.1? We refer to this property as saying that

the global invariant prediction assumption is satisfied.

There are some trivial counterexamples to this. For example, if we have a struc-

tural equation model where

Y = X2
3 +X1X2 + 0 ·X4 + ε,

then although pa(0) = {1, 2, 3, 4}, it is clear that S∗ = {1, 2, 3} would suffice for the

global invariant prediction assumption to hold. Here the model fails to satisfy causal

minimality; in fact, this type of behaviour can only occur when causal minimality

is not satisfied.

Proposition 4.2. Let S be a structural equation model for X = (Y = X0, X1, . . . , Xp)

and P be the distribution of X. Suppose that P is absolutely continuous with respect

to a product measure, and satisfies causal minimality with respect to the associated

directed acyclic graph G. Then the global invariant prediction assumption cannot be

true for any T ∗ ⊂ S∗ = pa(0).

Proof. Suppose the global invariant prediction assumption is true for T ∗ ⊂ pa(0),

so that for any set of interventions E which only act on {X1, . . . , Xp}, we know that

Y e = g(Xe
T ∗ , υ

e) where υe ⊥⊥ Xe
T ∗ and υe ∼ Gυ

for some function g and noise distribution Gυ. Now let E = {e}, where e corresponds

to performing no intervention, and G′ be the subgraph of G where pa(0) = T ∗ in

G′. In particular, this means that G′ is a directed acyclic graph and X is generated

by a structural equation model with distribution P and associated directed acyclic

graph G′. Then by Theorem 1.1, P satisfies the Markov property with respect to

G′, which contradicts causal minimality.

Despite this result, there are still a large number of possible S∗ to rule out. As
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the following result shows, the global invariant prediction assumption is true for

many S∗ containing pa(0), but in a “redundant” way.

Proposition 4.3. Let S be a structural equation model for X = (Y = X0, X1, . . . , Xp).

Suppose that the distribution P of X is absolutely continuous with respect to a prod-

uct measure, say with density f . Then the global invariant prediction assumption is

satisfied by any pa(0) ∪ T , where T ⊆ nd(0).

Proof. Without loss of generality we may assume T ⊆ nd(0) \ pa(0); fix such a T.

This result then follows from the fact that X0 ⊥⊥ Xnd(0)\pa(0) |Xpa(0). Given this, it

implies that X0 ⊥⊥ XT |Xpa(0), and therefore that

fY |Xpa(0)∪T (y |xpa(0)∪T ) = fY |Xpa(0)
(y |xpa(0)).

By Theorem 4.1, we know that the right hand side is invariant (up to almost sure

equivalence) under any set of interventions E which do not act on Y . This therefore

holds for the left hand side, which then gives the desired result.

In order to prove that X0 ⊥⊥ Xnd(0)\pa(0) |Xpa(0), due to the conditions we impose

on P , it is enough to show that 0 and nd(0) \ pa(0) are d-separated by pa(0). Take

a path from 0 to any node in nd(0) \ pa(0). There are then two possibilities:

(i) If the path starts as 0 ← j, then the path is blocked by pa(0) as j ∈ pa(0)

and j is not a collider.

(ii) If the path starts as 0 → j, then the path must contain a collider, as else we

would have a directed path from 0 to a node in nd(0) \pa(0), which is absurd.

If we then take the first colliding node, it nor any of its descendants can lie in

pa(0) as else we create a cycle, meaning that the path is blocked by pa(0).

This suggests that the correct question to ask is whether there exists a unique

minimal subset S∗ (with respect to inclusion) which satisfies the global invariant

prediction assumption. As S(E) depends only on the intersection of these minimal

subsets, a positive answer to this tells us that it is sensible to ask whether we can

find finite E such that S(E) = S∗. The following result shows that the answer to

this question is yes; provided causal minimality holds, this set is therefore pa(0).

Theorem 4.4. Let S be a structural equation model for X = (Y = X0, X1, . . . , Xp).

Then there exists a unique minimal set S such that the global invariant prediction

assumption is satisfied by S.
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Proof. By Theorem 4.1 we know that a minimal set exists. For sake of contradiction,

suppose we have two distinct minimal (so non-empty) sets S and T . Let V = S∩T .

Then for any set E of interventions which do not intervene on Y , we have

Y e = f(Xe
V , X

e
S\V , ε

e), where εe ⊥⊥ Xe
S and εe ∼ Fε

= g(Xe
V , X

e
T\V , υ

e), where υe ⊥⊥ Xe
T and υe ∼ Gυ

for all e ∈ E , some choice of functions f, g and some noise distributions Fε, Gυ. Now

consider the interventional settings

e→ do
(
Xe
V = xV , X

e
S\V = xS\V , X

e
T\V = xT\V

)
.

By fixing xV and varying xS\V , it follows that f(xV , xS\V , ε) = f(xV , ε). But then

Y e = f(Xe
V , ε

e) where εe ⊥⊥ Xe
V , ε

e ∼ Fε

for all e ∈ E , so V satisfies the global invariant prediction assumption. However,

this contradicts the minimality of S and T .

4.3 When does S(E) = S∗?

The results in Section 4.2 tell us that is sensible to ask whether there exists a

finite (and ideally practically realisable) set of interventional settings E for which

S(E) = S∗. To illustrate one case of when this is so, we generalize a result of Peters

et al. [2016, Theorem 2] on guaranteeing S(E) = S∗ in linear Gaussian structural

equation models.

We do so by extending the result to handle additive structural equation models.

Supposing X = (Y = X0, X1, . . . , Xp), this is a structural equation model S (with

associated directed acyclic graph G) such that

Xi =

p∑
j=0

fi,j(Xj) + εi (4.2)

for some functions fi,j : R→ R, belonging to some fixed function class C, such that

j → k in G if and only if fk,j 6≡ 0. We further assume that

C ⊆ C ′ :=
{
f : R→ R | f(0) = 0,E[|f(Xi)|2] <∞ for all i = 0, . . . , p

}
, (4.3)
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to handle integrability and identifiability issues (the latter introduced by adding

and subtracting constants to functions). Provided f ∈ C ′, we know that f is non-

constant if and only if f 6≡ 0. This means that pa(0) is the unique minimal set

satisfying the global invariant prediction, by arguing analogously to Theorem 4.4.

We then define

H0,S(E) :

 there exist f̃j ∈ C with fj ≡ 0 for j /∈ S and Fε s.t for

all e ∈ E , Y e =
∑p

j=1 f̃j(X
e
j ) + εe where εe ⊥⊥ Xe

S, ε
e ∼ Fε

(4.4)

in a similar fashion to (2.7), and S(E) analogously to (2.6).

One type of intervention we will consider is the do-intervention, as introduced in

Section 1.1, allowing it to act on multiple variables A ⊆ {1, . . . , p}. We also consider

noise interventions [Peters et al., 2016, Section 4.2] on variables in A, which have

the form

e→ do

(
Xj =

p∑
k=0

fj,k(Xk) + ε̃j for j ∈ A

)
, (4.5)

where either ε̃j = Aejεj or εj +Ce
j for some random Aej or Ce

j , which can be constant

almost surely. We also require that they are independent of each other across j ∈ A,

and each are generally independent of every other variable in the model except the

{Xk | k ∈ de(j)} for j ∈ A. We now have the following result:

Theorem 4.5. Suppose S is an additive structural equation model as in (4.2) which

generates X. Further suppose that the noise distributions εi are such that 0 <

Var(εi) < ∞ for i = 0, . . . , p. Let E be a set of interventional settings, which

includes 1 ∈ E corresponding to performing no intervention at all. For e ∈ E,

denote the interventional system by a superscript e. Then:

(i) Suppose E contains e ∈ E corresponding to a do intervention on Ae = {j} for

all j = 1, . . . , p. Then there exist do interventions such that S(E) = pa(0), in

the sense that{
a ∈ Rp : S(E) = pa(0) when

p⋃
j=1

{ej → do(Xj = aj)} ⊆ E

}
6= ∅.

(ii) Suppose E contains e ∈ E corresponding to a noise intervention on Ae = {j}
for all j = 1, . . . , p. Then provided E

[
(Aej)

2
]
6= 1 or E

[
(Ce

j )
2
]
6= 0, depending

on whether the intervention scales or shifts the noise respectively, for all j =

1, . . . , p, we have that S(E) = pa(0).

40



Proof. We suppose that S(E) 6= pa(0) to deduce a contradiction. As S(E) ⊆ pa(0)

by Theorem 4.1, this implies that there exists S such that pa(Y ) 6⊆ S and H0,S(E)

is true. In particular, this means that there exists functions f̃j ∈ C, with fj ≡ 0 for

j /∈ S and fj 6≡ 0 and non-constant otherwise, such that

Re(S) := Y e −
p∑
j=1

f̃j(X
e
j )

d
= Rf (S) for all e, f ∈ E .

By the defining equations of the structural equation model, we can write

Re(S) = Y e −
p∑
j=1

f̃j(X
e
j ) =

p∑
j=1

gj(X
e
j ) + εe0

for some functions gj := f0,j − f̃j ∈ C ′. In particular, we note that there exists j

such that gj 6≡ 0, and therefore non-constant also (as gj(0) = 0).

LetN = {j ∈ {1, . . . , p} | gj 6≡ 0}, and select k ∈ N such that it is not an ancestor

of any j ∈ N \ {k}; we can find such a k as G is acyclic. Suppose there exists e ∈ E
such that e is a noise or do-intervention on Ae = {k}. In the case of this being a

do-intervention, we have that

R1(S) = gk(X
1
k) +

p∑
j=0,j 6=k

gj(X
1
j ) + ε10, Re(S)

d
= gk(a

e
k) +

p∑
j=0,j 6=k

gj(X
1
j ) + ε10.

If these are equal in distribution, then E[gk(X
1
k)] = gk(a

e
k). This holds even when

we vary aek, so as gk is non-constant, we can find aek ∈ R which will give rise to a

contradiction.

If we have a noise intervention, then by iteratively using the defining equations

of the structural equation model, we get that

R1(S) = ε1k + g̃
(
ε10, . . . , ε

1
k−1, ε

1
k+1, . . . , ε

1
p

)
for some non-trivial function g̃. Similarly we find that

Re(S)
d
= Aekε

1
k + g̃

(
ε10, . . . , ε

1
k−1, ε

1
k+1, . . . , ε

1
p

)
or

d
= Ce

k + ε1k + g̃
(
ε10, . . . , ε

1
k−1, ε

1
k+1, . . . , ε

1
p

)
,

depending on whether we scale or shift the noise distribution respectively. In the
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former case, by the joint independence of the ε1i and the independence of Aek from

these, we see that

E[R1(S)2]− E[Re(S)2] =
(
1− E

[
(Aek)

2
])

E
[
(ε1k)

2
]
6= 0

provided E [(Aek)
2] 6= 1, which gives rise to a contradiction. In the latter case of a

shift, we may deduce in a similar fashion that E[R1(S)2]−E[Re(S)2] = E [(Ce
k)

2] 6= 0,

which again creates a contradiction.

We note that, in practice, the possible values of aek which allow for S(E) = pa(0)

may be very broad. For example, if C = C(R)∩C ′ and X1
k has a density with respect

to Lebesgue measure, then E[gk(X
1
k)] = g(c) for some c ∈ R by the integral version

of the mean value theorem. In this case it is therefore enough for aek to not lie in

the same level set as c. If we specialise further to C being the intersection of C ′ with

the set of polynomial functions, then all but finitely many aek ∈ R would suffice.

4.4 Differences with invariant prediction

In the context of structural equation models, invariant prediction is strongly linked

to the autonomy property. Despite this, they differ in philosophy about what causal

information they are concerned about. In a structural equation model, we are in-

terested about the causality structures between all random variables of interest,

versed via the language of d-separation and conditional independence. In contrast,

with invariant prediction we are only concerned with finding variables which have a

“non-zero direct effect” on one particular variable of interest.

Recall that in a structural equation model, we say that a variable Xj has a to-

tal causal effect on Xk if there exists a distribution εj such that Xj 6⊥⊥ Xk under

X | do(Xj = εj). We have already seen that, although it is necessary for j to be

an ancestor of k, it is not sufficient even if it is a parent (e.g (1.5)). Supposing

Xk is the variable of interest, we know that the unique minimal set satisfying the

global invariant prediction assumption is the parent set of k. As these variables are

the ones with a non-zero direct effect, this notion is therefore separate from that

of variables with a total causal effect; they describe different aspects of causality.

Invariant prediction should therefore be considered as a way of testing for the uni-

versality of the data generating process, for a particular variable of interest, under

any intervention performed on variables other than itself.
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Section 5

Simulation study of invariant

prediction methods

Having detailed how we can carry out invariant prediction for generalized linear mod-

els in Section 2.5.2, we now investigate the coverage probability P(Ŝ(E) ⊆ S∗) and

equality probability P(Ŝ(E) = S∗) for both the methods we proposed via simulation.

For the former, although we can guarantee P(Ŝ(E) ⊆ S∗) ≥ 1−α asymptotically, we

want to see if we can expect similar coverage for finite samples. As we ideally want

to completely identify S∗, we also want to know the probability that Ŝ(E) = S∗

occurs, as we currently have no general theoretical results for such a quantity.

We investigate the behaviour of these two quantities both as the number of

samples ne per environment increase, and when we take successively increasing sets

of environments E1 ⊂ E2 ⊂ . . . to examine. To do so, we perform invariant prediction

on a binary variable in various simulated structural equation models. The form these

models take, in addition to the interventions we perform on the model in order to

try and infer S∗, is described in Section 5.1. We then display visually the results of

these simulations, and discuss their implications, in Section 5.2.

5.1 Simulation settings

In order to study the coverage and equality probabilities, we look at the results

of performing various interventions on 25 separate simulated structural equation

models. For each model, we begin by simulating a directed acyclic graph with p

vertices and average degree k, such that

(i) p = 6 or 7; k = 1 or 2 (13 models), or

(ii) p = 8 or 9; k = 2 or 3 (12 models).

43



The number of vertices and average degree are selected independently and randomly

with equal probabilities. Labelling the variables as Y = X1, X2, . . . , Xp, we redraw

graphs until S∗ := pa(1) 6= ∅, in order to allow us to investigate the coverage and

equality probabilities when these are not necessarily equal.

To generate the directed acyclic graph, we use the method described by Peters

et al. [2016, Appendix G]. Letting p be the number of nodes and k the average degree,

to generate a directed acyclic graph with these properties, we begin by generating

a random permutation π of {1, . . . , p}. Treating this as a topological order, we

then connect j → k with probability k/(p − 1) provided π(j) < π(k). Calling the

generated graph G, on average we would expect it to contain

p−1∑
i=1

k

p− 1
(p− i) =

k

p− 1
· p(p− 1)

2
=
kp

2
(5.1)

(directed) edges in total. Therefore, viewing G as an undirected graph, the average

degree is then

2 · (average size of |E|)
|V |

=
2

p
· kp

2
= k as desired. (5.2)

Given a directed acyclic graph, we construct a structural equation model by

setting for i = 1, . . . , p

Xi =

1

[
exp(ηi+

∑p
j=1 γi,jXj)

1+exp(ηi+
∑p

j=1 γi,jXj)
> εi

]
, where εi ∼ U [0, 1] if i = 1,

ηi +
∑p

j=1 γi,jXj + εi, where εi ∼ N(0, σ2
i ) if i 6= 1,

(5.3)

where γi,j 6= 0 if and only if j → i, and the εi are jointly independent. The remaining

parameters are then all independently simulated as follows:

(i) the non-zero γi,j are assigned a random sign and magnitude uniformly from

{0.5, 0.6, . . . , 2},

(ii) the σ2
i are randomly sampled uniformly from {0.7, 0.8, 0.9, 1.0, 1.1}, and

(iii) the ηi are randomly sampled uniformly from −0.5 to 0.5.

We use e1 to denote the interventional or observational setting corresponding to

sampling from the above model. We then consider the following interventional

settings, which act on nodes only in {2, . . . , p}:
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• e2 - for two nodes randomly selected in advance, we perform independent noise

interventions (recall (4.5)) on each, where we shift εi by A ∼ U [0.5, 1.5];

• e3 - for two nodes randomly selected in advance, we perform interventions of

the form do(Xi = ε̃i) where ε̃i ∼ N(0, 0.7);

• e4 - for three nodes randomly selected in advance, we perform interventions of

the form do (Xi = ε̃i) where ε̃i ∼ N(−0.5, 0.8);

• e5 - for three nodes randomly selected in advance, we perform interventions of

the form

do

Xi = 0.5 + ηi +
∑

j:π(j)<π(i)

(γi,j + Ai,j)Xj


where the Ai,j are independent and identically distributed U [0.3, 0.8] random

variables. We note that this is a bona-fide intervention, as no cycles are

introduced by adding variables j with π(j) < π(i) to the parent set of i;

if j were an ancestor of i, we would have that π(i) < π(j) which is absurd.

We then form Ej = {ei : i ≤ j}, so E2 ⊂ . . . ⊂ E5. We add interventions in increasing

order of the severity of changes to the model they make, in order to try and examine

the strength of interventions required to identify S∗ = pa(1) (the minimal unique

set satisfying the global invariant prediction assumption), as we cannot use e.g

Theorem 4.5 for the structural equation model constructed here.

For each structural equation model and framework of interventions (which we

now refer to as a scenario), we attempt to identify S∗ = pa(1) using the two different

tests for H0,S(E) provided in Section 2.5.2. To do so, we take ne samples from each

environment e1, . . . , e5, and then form Ŝ(Ej)A and Ŝ(Ej)B for each j = 2, . . . , 5, con-

structing Ŝ(Ej)A/B by using the F tests1 (2.25) or (2.27) respectively to test H0,S(E)

to a size 0.1 . We form these estimators for sample sizes ne = 100, 200, . . . , 1000, and

count whether Ŝ(Ej)A/B is equal to pa(1), a subset of it, or neither. We then repeat

this process 100 times2 per scenario, in order to give estimates of the coverage and

equality probabilities for various Ej and sample sizes ne.

1Although this is not necessary as the dispersion parameter is known, we found that these
versions give better equality properties for small samples than the corresponding estimators using
the χ2 versions (2.24) or (2.26) for testing H0,S(E).

2This number was chosen as it was sufficiently low to allow for simulations to be carried out in a
reasonable time, yet high enough so that the standard error in any coverage or equality probability
estimate is at most 0.05, which will suffice for our purposes of investigating (mostly) qualitative
behaviour.
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5.2 Results and discussion

The results of the simulations described in Section 5.1 are displayed in Figures 5.1

and 5.2. The former displays estimates for the coverage and equality probabilities,

P(Ŝ(Ej)A/B ⊆ S∗) and P(Ŝ(Ej)A/B = S∗), for fixed values of ne, examining how they

vary as the number of environmental settings used increases. In contrast, the latter

displays information about how the equality probabilities vary with the total sample

size across all the different environmental settings and keeping the Ej fixed.

We begin by mentioning that the estimated coverage probability, under any

combination of scenario, testing method, sample size and number of environments,

is consistent with P(Ŝ(Ej)A/B ⊆ S∗) ≥ 0.9, as observed in Figures 5.1a, 5.1c and

5.1e. Recalling that the standard error of each estimate is no greater than 0.05, we

see that nearly all the probability estimates are either above 0.9, with the remainder

being within one standard error of this threshold. Furthermore, there is no apparent

change in behaviour when using either testing method.

Asymptotically, this behaviour is to be expected by analogy to Theorem 2.2,

because both tests have asymptotic size 0.1. In contrast, for small sample sizes this

likely occurs due to both tests for H0,S(E) having small power, meaning a large

number of H0,S(E) will be (incorrectly) not rejected. Consequently, it is likely that

Ŝ(E) = ∅ ⊆ S∗, regardless of whether H0,S∗(E) is rejected or not.

The behaviour of the equality probability, like that of the coverage probability,

is governed by the size and power of our tests for H0,S(E). However, the former is

also governed by whether we have enough environments to identify S∗, unlike the

latter. In order to obtain a high equality probability, we require

(i) the sample size to be sufficiently large for H0,S(E) to be powerful enough such

that Ŝ(E) = S(E) with high probability, and then

(ii) E to be such that S(E) = S∗.

As for any fixed size α, the tests we propose for H0,S(E) have asymptotic power

one (under mild regularity conditions), the first item should not be an issue. This

is confirmed by Figure 5.2, where the average trend lines for each fixed Ej show an

improvement in the equality probability with total sample size. Examining some of

the individual paths suggests that the equality probabilities can approach one even

for relatively small sample sizes (less than 500 samples in total).
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The trend lines in Figure 5.2 also show that, when averaging across all scenarios,

the equality probability increases alongside the Ej, even when the sample size is fixed.

There are two potential (not necessarily mutually exclusive) explanations for this

behaviour:

(i) Identifiability of S∗ - As Ej increases, we have Ej ⊂ Ej+1 such that S(Ej) ⊂ S∗

yet S(Ej+1) = S∗, so only with Ej+1 can we now identify S∗.

(ii) Power of H0,S(E) increases with E - Even if we have Ej ⊂ Ej+1 such that both

S(Ej) = S(Ej+1) = S∗, a test for H0,S(Ej+1) is more powerful (when the total

sample size is fixed) than that of H0,S(Ej) for information theoretic reasons.

Figure 5.3 suggests that both can occur. For the first, we see in Figure 5.3a that

the estimated equality probability is zero, regardless of the sample size, and so it is

likely that S(E2) 6= S∗. However, for subsequently larger Ej the equality probability

becomes non-zero, suggesting that now S(Ej) = S∗. For the second item, we now

look to Figure 5.3b, where for the same total sample size we say that the equality

probability under E3 is far greater than that under E2, although both are non-zero.

This therefore suggests that the tests for H0,S(Ej)

Investigating which Ej identify S∗ in more depth, Figures 5.1b, 5.1d and 5.1f

show that for each Ej, there are scenarios in which these environments allow S∗ to

be identified identify, and scenarios for which none of the Ej appear to be able to

identify S∗. Without an analogue to Theorem 4.5, it is hard to identify exactly

why this occurs. However, as even the action of noise interactions on two nodes is

enough to allow for identifiability in some models, this suggests that Theorem 4.5

may be generalized to the structural equation models we use here, although we do

not pursue this any further.

We end by noting that, as with the coverage probabilities, the choice of method

for testing H0,S(E) has no discernible impact on the equality probability. This may

be a consequence of the particular choice of interventions used, or simplify that the

two methods have similar behaviours. In any case, we therefore prefer to use Ŝ(Ej)A

over Ŝ(Ej)B for the interventions used here; this is because in practice we found it

to quicker computationally.
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(a) Coverage probability when ne = 100
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(b) Equality probability when ne = 100
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(c) Coverage probability when ne = 500
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(d) Equality probability when ne = 500
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(e) Coverage probability when ne = 1000
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(f) Equality probability when ne = 1000

Figure 5.1: Graphs illustrating the estimated coverage and equality probabilities

(from 100 simulations per scenario, 25 scenarios in total) of Ŝ(Ej)A (blue dots) and

Ŝ(Ej)B (red dots), for different sizes of ne and |Ej|. Observations common to the

same scenario are linked by dotted lines.
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(a) Estimated equality probabilities for Ŝ(Ej)A
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(b) Estimated equality probabilities for Ŝ(Ej)B

Figure 5.2: Graphs plotting the estimated equality probabilities (from 100

simulations per scenario, 25 scenarios in total) for Ŝ(Ej)A and Ŝ(Ej)B against the

total sample size across all environments used, for E2, . . . , E5 in blue, green, black

and red respectively. The average linear trend, for each Ej, of the equality

probability against the total sample size is plotted using the same colour as in the

individual case. Observations common to the same scenario and set of

environmental settings Ej are linked by dotted lines.
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(a) Estimated equality probabilities for Ŝ(Ej)A under (S1)
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(b) Estimated equality probabilities for Ŝ(Ej)A under (S2)

Figure 5.3: Graphs plotting the estimated equality probabilities (from 100

simulations per scenario) for Ŝ(Ej)A from two separate scenarios - labelled (S1)

and (S2) - against the total sample size across all environments used, for E2, . . . , E5
in blue, green, black and red respectively. Observations common to the same set of

environmental settings Ej are linked by dotted lines.
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Appendices

1 Theory of directed acyclic graphs

Although most of the graph theoretic terminology we use is elementary (see e.g

Bollobas [2002] for a review), the use of directed acyclic graphs and their basic

properties may be unfamiliar and so we give a brief overview.

Beginning with some useful definitions, a directed acyclic graph is as its namesake

suggests - a directed graph which contains no (directed) cycles. We now let G be

a directed acyclic graph. For a path j = j1, j2, . . . , jm = k in G, so ji and ji+1 are

adjacent but not necessarily such that ji → ji+1, we say that jl is a collider (relative

to the path) if jl−1 → jl ← jl+1. We then say that such a path is blocked by a set S

where j1, jm /∈ S if there exists jl such that either

(i) jl ∈ S yet jl is not a collider, or

(ii) jl is a collider yet ({jl}∪de(jl))∩S = ∅, i.e jl and none of its descendants are

contained in S.

Given disjoint subsets A,B, S of the edge set E, we then say that A and B are

d-separated by S if every path from A to B is blocked by the set S.

We now denote the vertex set of G by V = {1, . . . , p}. The following result now

guarantees the existence of a topological ordering, which is a permutation π of V

such that π(j) < π(k) whenever k is a descendent of j. This is a useful way of

storing information about the dependence structure between nodes in the graph G.

Proposition A.1. There exists a topological ordering π on G.

Proof. We prove this by induction on the number of vertices p. If p = 1, we are

done immediately. If p > 1, we first argue that there exists a source node (a node

with no parents). Indeed, if we pick a node (say j) in the graph, then either pa(j) is

empty, in which case we’re done, or it is not empty. In the latter case, we can then

visit a parent node and repeat this process. As G is acyclic, we can never revisit a
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previous node; as G is finite, this process will eventually terminate.

Now let k be a source node, and G′ the subgraph induced by removing the

node k from G. Then as G′ is also a directed acyclic graph, by the induction

hypothesis, there exists a topological ordering π on G′. Writing π as a permutation

of {1, . . . , p} \ {k}, we can then define a topological ordering on G by:

π̃(j) :=


1 if j = k

π(j) + 1 if π(j) < k

π(j) if π(j) > k.

2 Review of exponential dispersion families

We now give a brief review of exponential dispersion families, mostly for the sake of

establishing notation and stating a few basic properties.

Let P = {Pθ,σ | θ ∈ Θ ⊆ R, σ ∈ Φ ⊆ (0,∞)} be a family of distributions indexed

by θ and σ. We say that P is an exponential dispersion family if the Pθ,σ are

absolutely continuous with respect to some measure (say ν) with density

f (y; θ, σ) = a (y, σ) exp

(
1

σ
(yθ −K (θ))

)
for y ∈ Y ⊆ R, (A.4)

provided that the densities are non-degenerate, a(y, σ) is a known positive function,

and Θ is an open interval. We call σ the dispersion parameter, which can be either

known or unknown.

If Y ∼ Pθ,σ, then it is well known that

µ := Eθ,σ [Y ] = K ′(θ), Varθ,σ (Y ) = σK ′′(θ), (A.5)

and so as Y is non-degenerate, K ′ is invertible. We use this to give a bijection

between θ (the natural parameter) and µ (the mean parameter), which in an abuse

of notation is usually denoted via θ = θ(µ) and µ = µ(θ). We then define the

mean space M := {µ(θ) | θ ∈ Θ} and variance function V : M → (0,∞) given by

V (µ) = K ′′ (θ(µ)). The notation Y ∼ ED(µ, φ) is used to denote the distribution of

Y in terms of µ and φ, i.e we write Y ∼ ED(µ, φ) if Y ∼ Pθ(µ),φ.
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3 Properties of the invariant Lasso

We now prove some properties of the invariant Lasso which were stated in Sec-

tion 3.2. We first show that there exists a solution to (3.6). Denote Qλ(β) for the

objective function and let C :=
∑

e∈E ‖Ye‖
2
2 /2ne. Then as

inf
β∈Rp :λ‖β‖1≤C

Qλ(β) ≤ Qλ(0) = C < inf
β∈Rp :λ‖β‖1>C

Qλ(β), (A.6)

it suffices to minimize the continuous function Qλ(β) over the closed and bounded

(thus compact) set {β ∈ Rp | ‖β‖1 ≤ C/λ}, and so we know a solution exists.

Although this solution may not be unique, we can show that both the fitted

values Xeβ̂λ for each e ∈ E and ||β̂λ||1 are unique. Suppose that β1 and β2 are both

solutions to (3.6), and let t ∈ (0, 1). Then as ‖·‖22 is strictly convex,

∑
e∈E

1

ne
||Ye −Xe(tβ1 + (1− t)β2)||22

≤ t
∑
e∈E

1

ne
||Ye −Xeβ1||22 + (1− t)

∑
e∈E

1

ne
||Ye −Xeβ2||22 (A.7)

with equality if and only if Xeβ1 = Xeβ2 for all e ∈ E . As ‖·‖1 is convex, we have

‖tβ1 + (1− t)β2‖1 ≤ t ‖β1‖1 + (1− t) ‖β2‖1 . (A.8)

Adding these together gives Qλ(tβ1 + (1 − t)β2) ≤ tQλ(β1) + (1 − t)Qλ(β2), which

is an equality by convexity of the problem. Therefore both (A.7) and (A.8) are

equalities, so the fitted values are unique for each e ∈ E . As Qλ(β) is fixed across

solutions to (3.6), this then implies the uniqueness of ||β̂λ||1.

4 Proof of Lemma 3.3

We first consider the case when j ∈ S∗, although we only require that ε ⊥⊥ Xe
j for all

e ∈ E . Let G be the sigma-algebra generated by the independent samples (xi)i=1,...,n,

and denote PG(A) := E[1A|G]. Now, conditional on G

Zj =
∑
e∈E

1

ne

∑
i∈Ie

xijεi ∼ N

(
0, σ2

∑
e∈E

∑
i∈Ie

x2ij
n2
e

)
,

55



both as the xijεi are independent across i = 1, . . . , n, and as xij is independent of εi

for i = 1, . . . , n because j ∈ S∗. Therefore we obtain that

PG (|Zj| > t) ≤ exp

−t2
2σ2

(∑
e∈E

∑
i∈Ie

x2ij
n2
e

)−1 ,

by using the tail bound P(Z > t) ≤ exp(−t2/2σ2)/2 when Z ∼ N(0, σ2). Then as

the |Xi,j| ≤M almost surely and
∑

e∈E n
−1
e ≤ |E|/nmin, we get that

PG (|Zj| > t) ≤ exp

(
− t2nmin

2|E|M2σ2

)
.

holds on an event of probability one. Taking expectations then gives the result as

the right hand side is non-random.

Now suppose that j /∈ S∗ and ε 6⊥⊥ Xe
j for some e ∈ E . Despite the lack of

independence, we will produce a tail bound which is the same as the bound in

the j ∈ S∗ case, up to multiplication by a (potentially rapidly decaying) function

depending on t. We proceed by producing a Chernoff bound (see e.g Bühlmann

and van de Geer [2011, Chapter 14]) on Zj. Letting s ≥ 0, by applying Markov’s

inequality to P
(
esZj > est

)
, we get

P(Zj > t) ≤ e−stE
[
esZj

]
= E

[
exp

(∑
e∈E

∑
i∈Ie

1

ne
xijεi

)]
= e−st

∏
e∈E

∏
i∈Ie

E
[
esxijεi/ne

]
(as the xijεi are independent)

≤ e−st
∏
e∈E

∏
i∈Ie

E
[
esM |εi|/ne

]
(as xijεi ≤M |εi|).

To proceed any further, we need to obtain the moment generating function of |Y |
where Y ∼ N(0, σ2):

E
[
es|Y |

]
=

∫ ∞
−∞

1

σ
√

2π
es|y|e−y

2/2σ2

dy = 2

∫ ∞
0

1

σ
√

2π
esye−y

2/2σ2

dy (by symmetry)

= 2es
2σ2/2

∫ ∞
0

1

σ
√

2π
e−(y−sσ

2)2/2σ2

dy (by completing the square)

= 2es
2σ2/2

∫ ∞
−sσ

1√
2π
e−y

2/2 dy (by substituting y′ = (y − sσ2)/σ)

= es
2σ2/2

(
1 + 2

∫ ∞
sσ

1√
2π
e−y

2/2 dy

)
.
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Using the upper tail bound as before for a standard Normal distribution, we can

then obtain the upper bound

E
[
es|Y |

]
≤ es

2σ2/2(1 + e−s
2σ2/2).

Returning back to our bound on P (Zj > t), this therefore implies that

P (Zj > t) ≤ e−st
∏
e∈E

∏
i∈Ie

{
es

2M2σ2/2n2
e(1 + e−s

2σ2M2/2n2
e)
}

= e−st
∏
e∈E

{
es

2M2σ2/2n2
e(1 + e−s

2σ2M2/2n2
e)
}ne

= exp

(
−st+

s2M2σ2

2

∑
e∈E

1

ne

)∏
e∈E

(
1 + e−s

2σ2M2/2n2
e)
)ne

.

Optimizing this over s is likely intractable algebraically. However, as we would

expect the
∏

e∈E(· · · ) term to be small for sufficiently large s, and s should scale

with t which we would like to be large, we simply choose s which optimizes the left

hand side of the product. We therefore choose

s =
t

M2σ2
∑

e∈E n
−1
e

to obtain the bound, where we write nE :=
∑

e∈E , n
−1
e

P (Zj > t) ≤ exp

(
−t2

2M2σ2nE

)∏
e∈E

(
1 + exp

(
−t2

2M2σ2n2
en

2
E

))ne

≤ exp

(
−t2nmin

2|E|M2σ2

){
1 + exp

(
−t2n2

min

2|E|2M2σ2n2
max

)}n
where to obtain the last bound we have used that nE ≤ |E|/nmin and nenE ≤
|E|nmax/nmin. As the same argument follows through for −Zj, we therefore obtain

P(|Zj| > t) ≤ 2 exp

(
−t2nmin

2|E|M2σ2

){
1 + exp

(
−t2n2

min

2|E|2M2σ2n2
max

)}n
.

5 Invariant prediction when Xe is degenerate

Here we briefly discuss how invariant prediction can possibly be performed when an

Xe is degenerate for some e ∈ E . This is problematic, as it is necessary for Xe to
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be non-degenerate in order for the population regression coefficients β̂pred,e(S) and

ζ̂pred,e(S) to be unique. It also may mean that the design matrices Xe do not have

full (column) rank. Moreover, degenerate Xe can arise naturally, such as when a

do intervention is performed on some variables within a structural equation model.

As highlighted by Theorem 4.5, such interventions may be useful for identifiability

purposes, making this an issue of practical relevance.

One method of circumventing this is to pool some of the settings together to give

a non-degenerate Xe. However, this adversely effects the interpretation of our results

and could give a smaller set of plausible causal variables. Alternatively, suppose we

know the structure of
(
β̂pred,e(S), ζ̂pred,e(S)

)
when Xe is degenerate, and that Xf

is non-degenerate for f 6= e. Then to test whether H0,S(E) is true, we can first test

whether the unique population regression coefficients across E \ {e} are identical,

before using this information to allow the regression coefficients to be identifiable

under e ∈ E .

We illustrate this idea with a basic example. Let X = (Y = X0, X1, . . . , Xp)

be generated by a structural equation model, with Y depending linearly on some of

the Xi as in (2.2). Let E = E ′ ∪ {f}, where f corresponds to do(Xp = a) for some

a ∈ R. Otherwise, we suppose that Xe is non-degenerate for all e ∈ E ′, and that

Xf
−p is also non-degenerate. Given this, it follows that there exists β̃ ∈ Rp−1 and a

constant c such that(
β̂pred,f (S), ζ̂pred,f (S)

)
= {(β, ζ) ∈ Rp × R | β−p = β̃, ζ + aβp = c}. (A.9)

We know that otherwise
(
β̂pred,e(S), ζ̂pred,e(S)

)
is unique for all e ∈ E ′. Now, if

H0,S(E) is true, we know that β̂pred,e(S)−p = β̃, ζ̂pred,e(S) = ζ̂pred,f (S) and thus

ζ̂pred,e(S) + aβ̂pred,f (S)p = c. This allows us to uniquely determine the population

regression coefficients under f ∈ E .

We can then use the following testing procedure to incorporate information about

f ∈ E , which has size α in the sense of Theorem 2.2:

Step 1 : First test whether H0,S(E ′) is true to a size α|E ′|/|E|, using e.g the

method given in Section 2.5.1.

Step 2 : If this is true, we subtract the estimated intercept term from all the yi.

We then perform a Chow test to size α/|E| for the equality of coefficients between

the settings f ∈ E and E ′ ⊂ E without including the intercept term in the model.
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